| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_INTERNAL_INVERT_PSD_MATRIX_H_ |
| #define CERES_INTERNAL_INVERT_PSD_MATRIX_H_ |
| |
| #include "Eigen/Dense" |
| #include "ceres/internal/eigen.h" |
| #include "glog/logging.h" |
| |
| namespace ceres::internal { |
| |
| // Helper routine to compute the inverse or pseudo-inverse of a |
| // symmetric positive semi-definite matrix. |
| // |
| // assume_full_rank controls whether a Cholesky factorization or an |
| // Singular Value Decomposition is used to compute the inverse and the |
| // pseudo-inverse respectively. |
| // |
| // The template parameter kSize can either be Eigen::Dynamic or a |
| // positive integer equal to the number of rows of m. |
| template <int kSize> |
| typename EigenTypes<kSize, kSize>::Matrix InvertPSDMatrix( |
| const bool assume_full_rank, |
| const typename EigenTypes<kSize, kSize>::Matrix& m) { |
| using MType = typename EigenTypes<kSize, kSize>::Matrix; |
| const int size = m.rows(); |
| |
| // If the matrix can be assumed to be full rank, then if it is small |
| // (< 5) and fixed size, use Eigen's optimized inverse() |
| // implementation. |
| // |
| // https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html#title3 |
| if (assume_full_rank) { |
| if (kSize > 0 && kSize < 5) { |
| return m.inverse(); |
| } |
| return m.template selfadjointView<Eigen::Upper>().llt().solve( |
| MType::Identity(size, size)); |
| } |
| |
| // For a thin SVD the number of columns of the matrix need to be dynamic. |
| using SVDMType = typename EigenTypes<kSize, Eigen::Dynamic>::Matrix; |
| Eigen::JacobiSVD<SVDMType> svd(m, Eigen::ComputeThinU | Eigen::ComputeThinV); |
| return svd.solve(MType::Identity(size, size)); |
| } |
| |
| } // namespace ceres::internal |
| |
| #endif // CERES_INTERNAL_INVERT_PSD_MATRIX_H_ |