| |
| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: mierle@gmail.com (Keir Mierle) |
| |
| #include "ceres/tiny_solver_autodiff_function.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| |
| #include "ceres/tiny_solver.h" |
| #include "ceres/tiny_solver_test_util.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| |
| struct AutoDiffTestFunctor { |
| template <typename T> |
| bool operator()(const T* const parameters, T* residuals) const { |
| // Shift the parameters so the solution is not at the origin, to prevent |
| // accidentally showing "PASS". |
| const T& a = parameters[0] - T(1.0); |
| const T& b = parameters[1] - T(2.0); |
| const T& c = parameters[2] - T(3.0); |
| residuals[0] = 2. * a + 0. * b + 1. * c; |
| residuals[1] = 0. * a + 4. * b + 6. * c; |
| return true; |
| } |
| }; |
| |
| // Leave a factor of 10 slop since these tests tend to mysteriously break on |
| // other compilers or architectures if the tolerance is too tight. |
| static double const kTolerance = std::numeric_limits<double>::epsilon() * 10; |
| |
| TEST(TinySolverAutoDiffFunction, SimpleFunction) { |
| using AutoDiffTestFunction = |
| TinySolverAutoDiffFunction<AutoDiffTestFunctor, 2, 3>; |
| AutoDiffTestFunctor autodiff_test_functor; |
| AutoDiffTestFunction f(autodiff_test_functor); |
| |
| Eigen::Vector3d x(2.0, 1.0, 4.0); |
| Eigen::Vector2d residuals; |
| |
| // Check the case with cost-only evaluation. |
| residuals.setConstant(555); // Arbitrary. |
| EXPECT_TRUE(f(&x(0), &residuals(0), nullptr)); |
| EXPECT_NEAR(3.0, residuals(0), kTolerance); |
| EXPECT_NEAR(2.0, residuals(1), kTolerance); |
| |
| // Check the case with cost and Jacobian evaluation. |
| Eigen::Matrix<double, 2, 3> jacobian; |
| residuals.setConstant(555); // Arbitrary. |
| jacobian.setConstant(555); |
| EXPECT_TRUE(f(&x(0), &residuals(0), &jacobian(0, 0))); |
| |
| // Verify cost. |
| EXPECT_NEAR(3.0, residuals(0), kTolerance); |
| EXPECT_NEAR(2.0, residuals(1), kTolerance); |
| |
| // Verify Jacobian Row 1. |
| EXPECT_NEAR(2.0, jacobian(0, 0), kTolerance); |
| EXPECT_NEAR(0.0, jacobian(0, 1), kTolerance); |
| EXPECT_NEAR(1.0, jacobian(0, 2), kTolerance); |
| |
| // Verify Jacobian row 2. |
| EXPECT_NEAR(0.0, jacobian(1, 0), kTolerance); |
| EXPECT_NEAR(4.0, jacobian(1, 1), kTolerance); |
| EXPECT_NEAR(6.0, jacobian(1, 2), kTolerance); |
| } |
| |
| class DynamicResidualsFunctor { |
| public: |
| using Scalar = double; |
| enum { |
| NUM_RESIDUALS = Eigen::Dynamic, |
| NUM_PARAMETERS = 3, |
| }; |
| |
| int NumResiduals() const { return 2; } |
| |
| template <typename T> |
| bool operator()(const T* parameters, T* residuals) const { |
| // Jacobian is not evaluated by cost function, but by autodiff. |
| T* jacobian = nullptr; |
| return EvaluateResidualsAndJacobians(parameters, residuals, jacobian); |
| } |
| }; |
| |
| template <typename Function, typename Vector> |
| void TestHelper(const Function& f, const Vector& x0) { |
| Vector x = x0; |
| Eigen::Vector2d residuals; |
| f(x.data(), residuals.data(), nullptr); |
| EXPECT_GT(residuals.squaredNorm() / 2.0, 1e-10); |
| |
| TinySolver<Function> solver; |
| solver.Solve(f, &x); |
| EXPECT_NEAR(0.0, solver.summary.final_cost, 1e-10); |
| } |
| |
| // A test case for when the number of residuals is |
| // dynamically sized and we use autodiff |
| TEST(TinySolverAutoDiffFunction, ResidualsDynamicAutoDiff) { |
| Eigen::Vector3d x0(0.76026643, -30.01799744, 0.55192142); |
| |
| DynamicResidualsFunctor f; |
| using AutoDiffCostFunctor = ceres:: |
| TinySolverAutoDiffFunction<DynamicResidualsFunctor, Eigen::Dynamic, 3>; |
| AutoDiffCostFunctor f_autodiff(f); |
| |
| Eigen::Vector2d residuals; |
| f_autodiff(x0.data(), residuals.data(), nullptr); |
| EXPECT_GT(residuals.squaredNorm() / 2.0, 1e-10); |
| |
| TinySolver<AutoDiffCostFunctor> solver; |
| solver.Solve(f_autodiff, &x0); |
| EXPECT_NEAR(0.0, solver.summary.final_cost, 1e-10); |
| } |
| |
| } // namespace ceres |