| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: keir@google.com (Keir Mierle), |
| // dgossow@google.com (David Gossow) |
| |
| #include "ceres/gradient_checking_cost_function.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstdint> |
| #include <numeric> |
| #include <string> |
| #include <vector> |
| |
| #include "ceres/gradient_checker.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/parameter_block.h" |
| #include "ceres/problem.h" |
| #include "ceres/problem_impl.h" |
| #include "ceres/program.h" |
| #include "ceres/residual_block.h" |
| #include "ceres/dynamic_numeric_diff_cost_function.h" |
| #include "ceres/stringprintf.h" |
| #include "ceres/types.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| using std::abs; |
| using std::max; |
| using std::string; |
| using std::vector; |
| |
| namespace { |
| |
| class GradientCheckingCostFunction : public CostFunction { |
| public: |
| GradientCheckingCostFunction( |
| const CostFunction* function, |
| const std::vector<const LocalParameterization*>* local_parameterizations, |
| const NumericDiffOptions& options, |
| double relative_precision, |
| const string& extra_info, |
| GradientCheckingIterationCallback* callback) |
| : function_(function), |
| gradient_checker_(function, local_parameterizations, options), |
| relative_precision_(relative_precision), |
| extra_info_(extra_info), |
| callback_(callback) { |
| CHECK(callback_ != nullptr); |
| const vector<int32_t>& parameter_block_sizes = |
| function->parameter_block_sizes(); |
| *mutable_parameter_block_sizes() = parameter_block_sizes; |
| set_num_residuals(function->num_residuals()); |
| } |
| |
| virtual ~GradientCheckingCostFunction() { } |
| |
| virtual bool Evaluate(double const* const* parameters, |
| double* residuals, |
| double** jacobians) const { |
| if (!jacobians) { |
| // Nothing to check in this case; just forward. |
| return function_->Evaluate(parameters, residuals, NULL); |
| } |
| |
| GradientChecker::ProbeResults results; |
| bool okay = gradient_checker_.Probe(parameters, |
| relative_precision_, |
| &results); |
| |
| // If the cost function returned false, there's nothing we can say about |
| // the gradients. |
| if (results.return_value == false) { |
| return false; |
| } |
| |
| // Copy the residuals. |
| const int num_residuals = function_->num_residuals(); |
| MatrixRef(residuals, num_residuals, 1) = results.residuals; |
| |
| // Copy the original jacobian blocks into the jacobians array. |
| const vector<int32_t>& block_sizes = function_->parameter_block_sizes(); |
| for (int k = 0; k < block_sizes.size(); k++) { |
| if (jacobians[k] != NULL) { |
| MatrixRef(jacobians[k], |
| results.jacobians[k].rows(), |
| results.jacobians[k].cols()) = results.jacobians[k]; |
| } |
| } |
| |
| if (!okay) { |
| std::string error_log = "Gradient Error detected!\nExtra info for " |
| "this residual: " + extra_info_ + "\n" + results.error_log; |
| callback_->SetGradientErrorDetected(error_log); |
| } |
| return true; |
| } |
| |
| private: |
| const CostFunction* function_; |
| GradientChecker gradient_checker_; |
| double relative_precision_; |
| string extra_info_; |
| GradientCheckingIterationCallback* callback_; |
| }; |
| |
| } // namespace |
| |
| GradientCheckingIterationCallback::GradientCheckingIterationCallback() |
| : gradient_error_detected_(false) { |
| } |
| |
| CallbackReturnType GradientCheckingIterationCallback::operator()( |
| const IterationSummary& summary) { |
| if (gradient_error_detected_) { |
| LOG(ERROR)<< "Gradient error detected. Terminating solver."; |
| return SOLVER_ABORT; |
| } |
| return SOLVER_CONTINUE; |
| } |
| void GradientCheckingIterationCallback::SetGradientErrorDetected( |
| std::string& error_log) { |
| std::lock_guard<std::mutex> l(mutex_); |
| gradient_error_detected_ = true; |
| error_log_ += "\n" + error_log; |
| } |
| |
| CostFunction* CreateGradientCheckingCostFunction( |
| const CostFunction* cost_function, |
| const std::vector<const LocalParameterization*>* local_parameterizations, |
| double relative_step_size, |
| double relative_precision, |
| const std::string& extra_info, |
| GradientCheckingIterationCallback* callback) { |
| NumericDiffOptions numeric_diff_options; |
| numeric_diff_options.relative_step_size = relative_step_size; |
| |
| return new GradientCheckingCostFunction(cost_function, |
| local_parameterizations, |
| numeric_diff_options, |
| relative_precision, extra_info, |
| callback); |
| } |
| |
| ProblemImpl* CreateGradientCheckingProblemImpl( |
| ProblemImpl* problem_impl, |
| double relative_step_size, |
| double relative_precision, |
| GradientCheckingIterationCallback* callback) { |
| CHECK(callback != nullptr); |
| // We create new CostFunctions by wrapping the original CostFunction |
| // in a gradient checking CostFunction. So its okay for the |
| // ProblemImpl to take ownership of it and destroy it. The |
| // LossFunctions and LocalParameterizations are reused and since |
| // they are owned by problem_impl, gradient_checking_problem_impl |
| // should not take ownership of it. |
| Problem::Options gradient_checking_problem_options; |
| gradient_checking_problem_options.cost_function_ownership = TAKE_OWNERSHIP; |
| gradient_checking_problem_options.loss_function_ownership = |
| DO_NOT_TAKE_OWNERSHIP; |
| gradient_checking_problem_options.local_parameterization_ownership = |
| DO_NOT_TAKE_OWNERSHIP; |
| gradient_checking_problem_options.context = problem_impl->context(); |
| |
| NumericDiffOptions numeric_diff_options; |
| numeric_diff_options.relative_step_size = relative_step_size; |
| |
| ProblemImpl* gradient_checking_problem_impl = new ProblemImpl( |
| gradient_checking_problem_options); |
| |
| Program* program = problem_impl->mutable_program(); |
| |
| // For every ParameterBlock in problem_impl, create a new parameter |
| // block with the same local parameterization and constancy. |
| const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks(); |
| for (int i = 0; i < parameter_blocks.size(); ++i) { |
| ParameterBlock* parameter_block = parameter_blocks[i]; |
| gradient_checking_problem_impl->AddParameterBlock( |
| parameter_block->mutable_user_state(), |
| parameter_block->Size(), |
| parameter_block->mutable_local_parameterization()); |
| |
| if (parameter_block->IsConstant()) { |
| gradient_checking_problem_impl->SetParameterBlockConstant( |
| parameter_block->mutable_user_state()); |
| } |
| |
| for (int i = 0; i < parameter_block->Size(); ++i) { |
| gradient_checking_problem_impl->SetParameterUpperBound( |
| parameter_block->mutable_user_state(), |
| i, |
| parameter_block->UpperBound(i)); |
| gradient_checking_problem_impl->SetParameterLowerBound( |
| parameter_block->mutable_user_state(), |
| i, |
| parameter_block->LowerBound(i)); |
| } |
| } |
| |
| // For every ResidualBlock in problem_impl, create a new |
| // ResidualBlock by wrapping its CostFunction inside a |
| // GradientCheckingCostFunction. |
| const vector<ResidualBlock*>& residual_blocks = program->residual_blocks(); |
| for (int i = 0; i < residual_blocks.size(); ++i) { |
| ResidualBlock* residual_block = residual_blocks[i]; |
| |
| // Build a human readable string which identifies the |
| // ResidualBlock. This is used by the GradientCheckingCostFunction |
| // when logging debugging information. |
| string extra_info = StringPrintf( |
| "Residual block id %d; depends on parameters [", i); |
| vector<double*> parameter_blocks; |
| vector<const LocalParameterization*> local_parameterizations; |
| parameter_blocks.reserve(residual_block->NumParameterBlocks()); |
| local_parameterizations.reserve(residual_block->NumParameterBlocks()); |
| for (int j = 0; j < residual_block->NumParameterBlocks(); ++j) { |
| ParameterBlock* parameter_block = residual_block->parameter_blocks()[j]; |
| parameter_blocks.push_back(parameter_block->mutable_user_state()); |
| StringAppendF(&extra_info, "%p", parameter_block->mutable_user_state()); |
| extra_info += (j < residual_block->NumParameterBlocks() - 1) ? ", " : "]"; |
| local_parameterizations.push_back(problem_impl->GetParameterization( |
| parameter_block->mutable_user_state())); |
| } |
| |
| // Wrap the original CostFunction in a GradientCheckingCostFunction. |
| CostFunction* gradient_checking_cost_function = |
| new GradientCheckingCostFunction(residual_block->cost_function(), |
| &local_parameterizations, |
| numeric_diff_options, |
| relative_precision, |
| extra_info, |
| callback); |
| |
| // The const_cast is necessary because |
| // ProblemImpl::AddResidualBlock can potentially take ownership of |
| // the LossFunction, but in this case we are guaranteed that this |
| // will not be the case, so this const_cast is harmless. |
| gradient_checking_problem_impl->AddResidualBlock( |
| gradient_checking_cost_function, |
| const_cast<LossFunction*>(residual_block->loss_function()), |
| parameter_blocks.data(), |
| static_cast<int>(parameter_blocks.size())); |
| } |
| |
| // Normally, when a problem is given to the solver, we guarantee |
| // that the state pointers for each parameter block point to the |
| // user provided data. Since we are creating this new problem from a |
| // problem given to us at an arbitrary stage of the solve, we cannot |
| // depend on this being the case, so we explicitly call |
| // SetParameterBlockStatePtrsToUserStatePtrs to ensure that this is |
| // the case. |
| gradient_checking_problem_impl |
| ->mutable_program() |
| ->SetParameterBlockStatePtrsToUserStatePtrs(); |
| |
| return gradient_checking_problem_impl; |
| } |
| |
| |
| } // namespace internal |
| } // namespace ceres |