|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/trust_region_minimizer.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <cstdlib> | 
|  | #include <cstring> | 
|  | #include <limits> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "Eigen/Core" | 
|  | #include "ceres/array_utils.h" | 
|  | #include "ceres/coordinate_descent_minimizer.h" | 
|  | #include "ceres/evaluator.h" | 
|  | #include "ceres/file.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/line_search.h" | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  | #include "ceres/sparse_matrix.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "ceres/trust_region_strategy.h" | 
|  | #include "ceres/types.h" | 
|  | #include "ceres/wall_time.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  | namespace { | 
|  |  | 
|  | LineSearch::Summary DoLineSearch(const Minimizer::Options& options, | 
|  | const Vector& x, | 
|  | const Vector& gradient, | 
|  | const double cost, | 
|  | const Vector& delta, | 
|  | Evaluator* evaluator) { | 
|  | LineSearchFunction line_search_function(evaluator); | 
|  |  | 
|  | LineSearch::Options line_search_options; | 
|  | line_search_options.is_silent = true; | 
|  | line_search_options.interpolation_type = | 
|  | options.line_search_interpolation_type; | 
|  | line_search_options.min_step_size = options.min_line_search_step_size; | 
|  | line_search_options.sufficient_decrease = | 
|  | options.line_search_sufficient_function_decrease; | 
|  | line_search_options.max_step_contraction = | 
|  | options.max_line_search_step_contraction; | 
|  | line_search_options.min_step_contraction = | 
|  | options.min_line_search_step_contraction; | 
|  | line_search_options.max_num_iterations = | 
|  | options.max_num_line_search_step_size_iterations; | 
|  | line_search_options.sufficient_curvature_decrease = | 
|  | options.line_search_sufficient_curvature_decrease; | 
|  | line_search_options.max_step_expansion = | 
|  | options.max_line_search_step_expansion; | 
|  | line_search_options.function = &line_search_function; | 
|  |  | 
|  | std::string message; | 
|  | scoped_ptr<LineSearch> line_search( | 
|  | CHECK_NOTNULL(LineSearch::Create(ceres::ARMIJO, | 
|  | line_search_options, | 
|  | &message))); | 
|  | LineSearch::Summary summary; | 
|  | line_search_function.Init(x, delta); | 
|  | line_search->Search(1.0, cost, gradient.dot(delta), &summary); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // Compute a scaling vector that is used to improve the conditioning | 
|  | // of the Jacobian. | 
|  | void TrustRegionMinimizer::EstimateScale(const SparseMatrix& jacobian, | 
|  | double* scale) const { | 
|  | jacobian.SquaredColumnNorm(scale); | 
|  | for (int i = 0; i < jacobian.num_cols(); ++i) { | 
|  | scale[i] = 1.0 / (1.0 + sqrt(scale[i])); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TrustRegionMinimizer::Init(const Minimizer::Options& options) { | 
|  | options_ = options; | 
|  | sort(options_.trust_region_minimizer_iterations_to_dump.begin(), | 
|  | options_.trust_region_minimizer_iterations_to_dump.end()); | 
|  | } | 
|  |  | 
|  | void TrustRegionMinimizer::Minimize(const Minimizer::Options& options, | 
|  | double* parameters, | 
|  | Solver::Summary* summary) { | 
|  | double start_time = WallTimeInSeconds(); | 
|  | double iteration_start_time =  start_time; | 
|  | Init(options); | 
|  |  | 
|  | Evaluator* evaluator = CHECK_NOTNULL(options_.evaluator.get()); | 
|  | SparseMatrix* jacobian = CHECK_NOTNULL(options_.jacobian.get()); | 
|  | TrustRegionStrategy* strategy = | 
|  | CHECK_NOTNULL(options_.trust_region_strategy.get()); | 
|  |  | 
|  | const bool is_not_silent = !options.is_silent; | 
|  |  | 
|  | // If the problem is bounds constrained, then enable the use of a | 
|  | // line search after the trust region step has been computed. This | 
|  | // line search will automatically use a projected test point onto | 
|  | // the feasible set, there by guaranteeing the feasibility of the | 
|  | // final output. | 
|  | // | 
|  | // TODO(sameeragarwal): Make line search available more generally. | 
|  | const bool use_line_search = options.is_constrained; | 
|  |  | 
|  | summary->termination_type = NO_CONVERGENCE; | 
|  | summary->num_successful_steps = 0; | 
|  | summary->num_unsuccessful_steps = 0; | 
|  | summary->is_constrained = options.is_constrained; | 
|  |  | 
|  | const int num_parameters = evaluator->NumParameters(); | 
|  | const int num_effective_parameters = evaluator->NumEffectiveParameters(); | 
|  | const int num_residuals = evaluator->NumResiduals(); | 
|  |  | 
|  | Vector residuals(num_residuals); | 
|  | Vector trust_region_step(num_effective_parameters); | 
|  | Vector delta(num_effective_parameters); | 
|  | Vector x_plus_delta(num_parameters); | 
|  | Vector gradient(num_effective_parameters); | 
|  | Vector model_residuals(num_residuals); | 
|  | Vector scale(num_effective_parameters); | 
|  | Vector negative_gradient(num_effective_parameters); | 
|  | Vector projected_gradient_step(num_parameters); | 
|  |  | 
|  | IterationSummary iteration_summary; | 
|  | iteration_summary.iteration = 0; | 
|  | iteration_summary.step_is_valid = false; | 
|  | iteration_summary.step_is_successful = false; | 
|  | iteration_summary.cost_change = 0.0; | 
|  | iteration_summary.gradient_max_norm = 0.0; | 
|  | iteration_summary.gradient_norm = 0.0; | 
|  | iteration_summary.step_norm = 0.0; | 
|  | iteration_summary.relative_decrease = 0.0; | 
|  | iteration_summary.trust_region_radius = strategy->Radius(); | 
|  | iteration_summary.eta = options_.eta; | 
|  | iteration_summary.linear_solver_iterations = 0; | 
|  | iteration_summary.step_solver_time_in_seconds = 0; | 
|  |  | 
|  | VectorRef x_min(parameters, num_parameters); | 
|  | Vector x = x_min; | 
|  | // Project onto the feasible set. | 
|  | if (options.is_constrained) { | 
|  | delta.setZero(); | 
|  | if (!evaluator->Plus(x.data(), delta.data(), x_plus_delta.data())) { | 
|  | summary->message = | 
|  | "Unable to project initial point onto the feasible set."; | 
|  | summary->termination_type = FAILURE; | 
|  | LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  | x_min = x_plus_delta; | 
|  | x = x_plus_delta; | 
|  | } | 
|  |  | 
|  | double x_norm = x.norm(); | 
|  |  | 
|  | // Do initial cost and Jacobian evaluation. | 
|  | double cost = 0.0; | 
|  | if (!evaluator->Evaluate(x.data(), | 
|  | &cost, | 
|  | residuals.data(), | 
|  | gradient.data(), | 
|  | jacobian)) { | 
|  | summary->message = "Residual and Jacobian evaluation failed."; | 
|  | summary->termination_type = FAILURE; | 
|  | LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | negative_gradient = -gradient; | 
|  | if (!evaluator->Plus(x.data(), | 
|  | negative_gradient.data(), | 
|  | projected_gradient_step.data())) { | 
|  | summary->message = "Unable to compute gradient step."; | 
|  | summary->termination_type = FAILURE; | 
|  | LOG(ERROR) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | summary->initial_cost = cost + summary->fixed_cost; | 
|  | iteration_summary.cost = cost + summary->fixed_cost; | 
|  | iteration_summary.gradient_max_norm = | 
|  | (x - projected_gradient_step).lpNorm<Eigen::Infinity>(); | 
|  | iteration_summary.gradient_norm = (x - projected_gradient_step).norm(); | 
|  |  | 
|  | if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) { | 
|  | summary->message = StringPrintf("Gradient tolerance reached. " | 
|  | "Gradient max norm: %e <= %e", | 
|  | iteration_summary.gradient_max_norm, | 
|  | options_.gradient_tolerance); | 
|  | summary->termination_type = CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
|  |  | 
|  | // Ensure that there is an iteration summary object for iteration | 
|  | // 0 in Summary::iterations. | 
|  | iteration_summary.iteration_time_in_seconds = | 
|  | WallTimeInSeconds() - iteration_start_time; | 
|  | iteration_summary.cumulative_time_in_seconds = | 
|  | WallTimeInSeconds() - start_time + | 
|  | summary->preprocessor_time_in_seconds; | 
|  | summary->iterations.push_back(iteration_summary); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (options_.jacobi_scaling) { | 
|  | EstimateScale(*jacobian, scale.data()); | 
|  | jacobian->ScaleColumns(scale.data()); | 
|  | } else { | 
|  | scale.setOnes(); | 
|  | } | 
|  |  | 
|  | iteration_summary.iteration_time_in_seconds = | 
|  | WallTimeInSeconds() - iteration_start_time; | 
|  | iteration_summary.cumulative_time_in_seconds = | 
|  | WallTimeInSeconds() - start_time | 
|  | + summary->preprocessor_time_in_seconds; | 
|  | summary->iterations.push_back(iteration_summary); | 
|  |  | 
|  | int num_consecutive_nonmonotonic_steps = 0; | 
|  | double minimum_cost = cost; | 
|  | double reference_cost = cost; | 
|  | double accumulated_reference_model_cost_change = 0.0; | 
|  | double candidate_cost = cost; | 
|  | double accumulated_candidate_model_cost_change = 0.0; | 
|  | int num_consecutive_invalid_steps = 0; | 
|  | bool inner_iterations_are_enabled = | 
|  | options.inner_iteration_minimizer.get() != NULL; | 
|  | while (true) { | 
|  | bool inner_iterations_were_useful = false; | 
|  | if (!RunCallbacks(options, iteration_summary, summary)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | iteration_start_time = WallTimeInSeconds(); | 
|  | if (iteration_summary.iteration >= options_.max_num_iterations) { | 
|  | summary->message = "Maximum number of iterations reached."; | 
|  | summary->termination_type = NO_CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const double total_solver_time = iteration_start_time - start_time + | 
|  | summary->preprocessor_time_in_seconds; | 
|  | if (total_solver_time >= options_.max_solver_time_in_seconds) { | 
|  | summary->message = "Maximum solver time reached."; | 
|  | summary->termination_type = NO_CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const double strategy_start_time = WallTimeInSeconds(); | 
|  | TrustRegionStrategy::PerSolveOptions per_solve_options; | 
|  | per_solve_options.eta = options_.eta; | 
|  | if (find(options_.trust_region_minimizer_iterations_to_dump.begin(), | 
|  | options_.trust_region_minimizer_iterations_to_dump.end(), | 
|  | iteration_summary.iteration) != | 
|  | options_.trust_region_minimizer_iterations_to_dump.end()) { | 
|  | per_solve_options.dump_format_type = | 
|  | options_.trust_region_problem_dump_format_type; | 
|  | per_solve_options.dump_filename_base = | 
|  | JoinPath(options_.trust_region_problem_dump_directory, | 
|  | StringPrintf("ceres_solver_iteration_%03d", | 
|  | iteration_summary.iteration)); | 
|  | } else { | 
|  | per_solve_options.dump_format_type = TEXTFILE; | 
|  | per_solve_options.dump_filename_base.clear(); | 
|  | } | 
|  |  | 
|  | TrustRegionStrategy::Summary strategy_summary = | 
|  | strategy->ComputeStep(per_solve_options, | 
|  | jacobian, | 
|  | residuals.data(), | 
|  | trust_region_step.data()); | 
|  |  | 
|  | if (strategy_summary.termination_type == LINEAR_SOLVER_FATAL_ERROR) { | 
|  | summary->message = | 
|  | "Linear solver failed due to unrecoverable " | 
|  | "non-numeric causes. Please see the error log for clues. "; | 
|  | summary->termination_type = FAILURE; | 
|  | LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iteration_summary = IterationSummary(); | 
|  | iteration_summary.iteration = summary->iterations.back().iteration + 1; | 
|  | iteration_summary.step_solver_time_in_seconds = | 
|  | WallTimeInSeconds() - strategy_start_time; | 
|  | iteration_summary.linear_solver_iterations = | 
|  | strategy_summary.num_iterations; | 
|  | iteration_summary.step_is_valid = false; | 
|  | iteration_summary.step_is_successful = false; | 
|  |  | 
|  | double model_cost_change = 0.0; | 
|  | if (strategy_summary.termination_type != LINEAR_SOLVER_FAILURE) { | 
|  | // new_model_cost | 
|  | //  = 1/2 [f + J * step]^2 | 
|  | //  = 1/2 [ f'f + 2f'J * step + step' * J' * J * step ] | 
|  | // model_cost_change | 
|  | //  = cost - new_model_cost | 
|  | //  = f'f/2  - 1/2 [ f'f + 2f'J * step + step' * J' * J * step] | 
|  | //  = -f'J * step - step' * J' * J * step / 2 | 
|  | model_residuals.setZero(); | 
|  | jacobian->RightMultiply(trust_region_step.data(), model_residuals.data()); | 
|  | model_cost_change = | 
|  | - model_residuals.dot(residuals + model_residuals / 2.0); | 
|  |  | 
|  | if (model_cost_change < 0.0) { | 
|  | VLOG_IF(1, is_not_silent) | 
|  | << "Invalid step: current_cost: " << cost | 
|  | << " absolute difference " << model_cost_change | 
|  | << " relative difference " << (model_cost_change / cost); | 
|  | } else { | 
|  | iteration_summary.step_is_valid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!iteration_summary.step_is_valid) { | 
|  | // Invalid steps can happen due to a number of reasons, and we | 
|  | // allow a limited number of successive failures, and return with | 
|  | // FAILURE if this limit is exceeded. | 
|  | if (++num_consecutive_invalid_steps >= | 
|  | options_.max_num_consecutive_invalid_steps) { | 
|  | summary->message = StringPrintf( | 
|  | "Number of successive invalid steps more " | 
|  | "than Solver::Options::max_num_consecutive_invalid_steps: %d", | 
|  | options_.max_num_consecutive_invalid_steps); | 
|  | summary->termination_type = FAILURE; | 
|  | LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We are going to try and reduce the trust region radius and | 
|  | // solve again. To do this, we are going to treat this iteration | 
|  | // as an unsuccessful iteration. Since the various callbacks are | 
|  | // still executed, we are going to fill the iteration summary | 
|  | // with data that assumes a step of length zero and no progress. | 
|  | iteration_summary.cost = cost + summary->fixed_cost; | 
|  | iteration_summary.cost_change = 0.0; | 
|  | iteration_summary.gradient_max_norm = | 
|  | summary->iterations.back().gradient_max_norm; | 
|  | iteration_summary.gradient_norm = | 
|  | summary->iterations.back().gradient_norm; | 
|  | iteration_summary.step_norm = 0.0; | 
|  | iteration_summary.relative_decrease = 0.0; | 
|  | iteration_summary.eta = options_.eta; | 
|  | } else { | 
|  | // The step is numerically valid, so now we can judge its quality. | 
|  | num_consecutive_invalid_steps = 0; | 
|  |  | 
|  | // Undo the Jacobian column scaling. | 
|  | delta = (trust_region_step.array() * scale.array()).matrix(); | 
|  |  | 
|  | // Try improving the step further by using an ARMIJO line | 
|  | // search. | 
|  | // | 
|  | // TODO(sameeragarwal): What happens to trust region sizing as | 
|  | // it interacts with the line search ? | 
|  | if (use_line_search) { | 
|  | const LineSearch::Summary line_search_summary = | 
|  | DoLineSearch(options, x, gradient, cost, delta, evaluator); | 
|  |  | 
|  | // Iterations inside the line search algorithm are considered | 
|  | // 'steps' in the broader context, to distinguish these inner | 
|  | // iterations from from the outer iterations of the trust | 
|  | // region minimizer The number of line search steps is the | 
|  | // total number of inner line search iterations (or steps) | 
|  | // across the entire minimization. | 
|  | summary->num_line_search_steps += line_search_summary.num_iterations; | 
|  | summary->line_search_cost_evaluation_time_in_seconds += | 
|  | line_search_summary.cost_evaluation_time_in_seconds; | 
|  | summary->line_search_gradient_evaluation_time_in_seconds += | 
|  | line_search_summary.gradient_evaluation_time_in_seconds; | 
|  | summary->line_search_polynomial_minimization_time_in_seconds += | 
|  | line_search_summary.polynomial_minimization_time_in_seconds; | 
|  | summary->line_search_total_time_in_seconds += | 
|  | line_search_summary.total_time_in_seconds; | 
|  |  | 
|  | if (line_search_summary.success) { | 
|  | delta *= line_search_summary.optimal_step_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | double new_cost = std::numeric_limits<double>::max(); | 
|  | if (evaluator->Plus(x.data(), delta.data(), x_plus_delta.data())) { | 
|  | if (!evaluator->Evaluate(x_plus_delta.data(), | 
|  | &new_cost, | 
|  | NULL, | 
|  | NULL, | 
|  | NULL)) { | 
|  | LOG_IF(WARNING, is_not_silent) | 
|  | << "Step failed to evaluate. " | 
|  | << "Treating it as a step with infinite cost"; | 
|  | new_cost = std::numeric_limits<double>::max(); | 
|  | } | 
|  | } else { | 
|  | LOG_IF(WARNING, is_not_silent) | 
|  | << "x_plus_delta = Plus(x, delta) failed. " | 
|  | << "Treating it as a step with infinite cost"; | 
|  | } | 
|  |  | 
|  | if (new_cost < std::numeric_limits<double>::max()) { | 
|  | // Check if performing an inner iteration will make it better. | 
|  | if (inner_iterations_are_enabled) { | 
|  | ++summary->num_inner_iteration_steps; | 
|  | double inner_iteration_start_time = WallTimeInSeconds(); | 
|  | const double x_plus_delta_cost = new_cost; | 
|  | Vector inner_iteration_x = x_plus_delta; | 
|  | Solver::Summary inner_iteration_summary; | 
|  | options.inner_iteration_minimizer->Minimize(options, | 
|  | inner_iteration_x.data(), | 
|  | &inner_iteration_summary); | 
|  | if (!evaluator->Evaluate(inner_iteration_x.data(), | 
|  | &new_cost, | 
|  | NULL, NULL, NULL)) { | 
|  | VLOG_IF(2, is_not_silent) << "Inner iteration failed."; | 
|  | new_cost = x_plus_delta_cost; | 
|  | } else { | 
|  | x_plus_delta = inner_iteration_x; | 
|  | // Boost the model_cost_change, since the inner iteration | 
|  | // improvements are not accounted for by the trust region. | 
|  | model_cost_change +=  x_plus_delta_cost - new_cost; | 
|  | VLOG_IF(2, is_not_silent) | 
|  | << "Inner iteration succeeded; Current cost: " << cost | 
|  | << " Trust region step cost: " << x_plus_delta_cost | 
|  | << " Inner iteration cost: " << new_cost; | 
|  |  | 
|  | inner_iterations_were_useful = new_cost < cost; | 
|  |  | 
|  | const double inner_iteration_relative_progress = | 
|  | 1.0 - new_cost / x_plus_delta_cost; | 
|  | // Disable inner iterations once the relative improvement | 
|  | // drops below tolerance. | 
|  | inner_iterations_are_enabled = | 
|  | (inner_iteration_relative_progress > | 
|  | options.inner_iteration_tolerance); | 
|  | VLOG_IF(2, is_not_silent && !inner_iterations_are_enabled) | 
|  | << "Disabling inner iterations. Progress : " | 
|  | << inner_iteration_relative_progress; | 
|  | } | 
|  | summary->inner_iteration_time_in_seconds += | 
|  | WallTimeInSeconds() - inner_iteration_start_time; | 
|  | } | 
|  | } | 
|  |  | 
|  | iteration_summary.step_norm = (x - x_plus_delta).norm(); | 
|  |  | 
|  | // Convergence based on parameter_tolerance. | 
|  | const double step_size_tolerance =  options_.parameter_tolerance * | 
|  | (x_norm + options_.parameter_tolerance); | 
|  | if (iteration_summary.step_norm <= step_size_tolerance) { | 
|  | summary->message = | 
|  | StringPrintf("Parameter tolerance reached. " | 
|  | "Relative step_norm: %e <= %e.", | 
|  | (iteration_summary.step_norm / | 
|  | (x_norm + options_.parameter_tolerance)), | 
|  | options_.parameter_tolerance); | 
|  | summary->termination_type = CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iteration_summary.cost_change =  cost - new_cost; | 
|  | const double absolute_function_tolerance = | 
|  | options_.function_tolerance * cost; | 
|  | if (fabs(iteration_summary.cost_change) <= absolute_function_tolerance) { | 
|  | summary->message = | 
|  | StringPrintf("Function tolerance reached. " | 
|  | "|cost_change|/cost: %e <= %e", | 
|  | fabs(iteration_summary.cost_change) / cost, | 
|  | options_.function_tolerance); | 
|  | summary->termination_type = CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const double relative_decrease = | 
|  | iteration_summary.cost_change / model_cost_change; | 
|  |  | 
|  | const double historical_relative_decrease = | 
|  | (reference_cost - new_cost) / | 
|  | (accumulated_reference_model_cost_change + model_cost_change); | 
|  |  | 
|  | // If monotonic steps are being used, then the relative_decrease | 
|  | // is the usual ratio of the change in objective function value | 
|  | // divided by the change in model cost. | 
|  | // | 
|  | // If non-monotonic steps are allowed, then we take the maximum | 
|  | // of the relative_decrease and the | 
|  | // historical_relative_decrease, which measures the increase | 
|  | // from a reference iteration. The model cost change is | 
|  | // estimated by accumulating the model cost changes since the | 
|  | // reference iteration. The historical relative_decrease offers | 
|  | // a boost to a step which is not too bad compared to the | 
|  | // reference iteration, allowing for non-monotonic steps. | 
|  | iteration_summary.relative_decrease = | 
|  | options.use_nonmonotonic_steps | 
|  | ? std::max(relative_decrease, historical_relative_decrease) | 
|  | : relative_decrease; | 
|  |  | 
|  | // Normally, the quality of a trust region step is measured by | 
|  | // the ratio | 
|  | // | 
|  | //              cost_change | 
|  | //    r =    ----------------- | 
|  | //           model_cost_change | 
|  | // | 
|  | // All the change in the nonlinear objective is due to the trust | 
|  | // region step so this ratio is a good measure of the quality of | 
|  | // the trust region radius. However, when inner iterations are | 
|  | // being used, cost_change includes the contribution of the | 
|  | // inner iterations and its not fair to credit it all to the | 
|  | // trust region algorithm. So we change the ratio to be | 
|  | // | 
|  | //                              cost_change | 
|  | //    r =    ------------------------------------------------ | 
|  | //           (model_cost_change + inner_iteration_cost_change) | 
|  | // | 
|  | // In most cases this is fine, but it can be the case that the | 
|  | // change in solution quality due to inner iterations is so large | 
|  | // and the trust region step is so bad, that this ratio can become | 
|  | // quite small. | 
|  | // | 
|  | // This can cause the trust region loop to reject this step. To | 
|  | // get around this, we expicitly check if the inner iterations | 
|  | // led to a net decrease in the objective function value. If | 
|  | // they did, we accept the step even if the trust region ratio | 
|  | // is small. | 
|  | // | 
|  | // Notice that we do not just check that cost_change is positive | 
|  | // which is a weaker condition and would render the | 
|  | // min_relative_decrease threshold useless. Instead, we keep | 
|  | // track of inner_iterations_were_useful, which is true only | 
|  | // when inner iterations lead to a net decrease in the cost. | 
|  | iteration_summary.step_is_successful = | 
|  | (inner_iterations_were_useful || | 
|  | iteration_summary.relative_decrease > | 
|  | options_.min_relative_decrease); | 
|  |  | 
|  | if (iteration_summary.step_is_successful) { | 
|  | accumulated_candidate_model_cost_change += model_cost_change; | 
|  | accumulated_reference_model_cost_change += model_cost_change; | 
|  |  | 
|  | if (!inner_iterations_were_useful && | 
|  | relative_decrease <= options_.min_relative_decrease) { | 
|  | iteration_summary.step_is_nonmonotonic = true; | 
|  | VLOG_IF(2, is_not_silent) | 
|  | << "Non-monotonic step! " | 
|  | << " relative_decrease: " | 
|  | << relative_decrease | 
|  | << " historical_relative_decrease: " | 
|  | << historical_relative_decrease; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (iteration_summary.step_is_successful) { | 
|  | ++summary->num_successful_steps; | 
|  | strategy->StepAccepted(iteration_summary.relative_decrease); | 
|  |  | 
|  | x = x_plus_delta; | 
|  | x_norm = x.norm(); | 
|  |  | 
|  | // Step looks good, evaluate the residuals and Jacobian at this | 
|  | // point. | 
|  | if (!evaluator->Evaluate(x.data(), | 
|  | &cost, | 
|  | residuals.data(), | 
|  | gradient.data(), | 
|  | jacobian)) { | 
|  | summary->message = "Residual and Jacobian evaluation failed."; | 
|  | summary->termination_type = FAILURE; | 
|  | LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | negative_gradient = -gradient; | 
|  | if (!evaluator->Plus(x.data(), | 
|  | negative_gradient.data(), | 
|  | projected_gradient_step.data())) { | 
|  | summary->message = | 
|  | "projected_gradient_step = Plus(x, -gradient) failed."; | 
|  | summary->termination_type = FAILURE; | 
|  | LOG(ERROR) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iteration_summary.gradient_max_norm = | 
|  | (x - projected_gradient_step).lpNorm<Eigen::Infinity>(); | 
|  | iteration_summary.gradient_norm = (x - projected_gradient_step).norm(); | 
|  |  | 
|  | if (options_.jacobi_scaling) { | 
|  | jacobian->ScaleColumns(scale.data()); | 
|  | } | 
|  |  | 
|  | // Update the best, reference and candidate iterates. | 
|  | // | 
|  | // Based on algorithm 10.1.2 (page 357) of "Trust Region | 
|  | // Methods" by Conn Gould & Toint, or equations 33-40 of | 
|  | // "Non-monotone trust-region algorithms for nonlinear | 
|  | // optimization subject to convex constraints" by Phil Toint, | 
|  | // Mathematical Programming, 77, 1997. | 
|  | if (cost < minimum_cost) { | 
|  | // A step that improves solution quality was found. | 
|  | x_min = x; | 
|  | minimum_cost = cost; | 
|  | // Set the candidate iterate to the current point. | 
|  | candidate_cost = cost; | 
|  | num_consecutive_nonmonotonic_steps = 0; | 
|  | accumulated_candidate_model_cost_change = 0.0; | 
|  | } else { | 
|  | ++num_consecutive_nonmonotonic_steps; | 
|  | if (cost > candidate_cost) { | 
|  | // The current iterate is has a higher cost than the | 
|  | // candidate iterate. Set the candidate to this point. | 
|  | VLOG_IF(2, is_not_silent) | 
|  | << "Updating the candidate iterate to the current point."; | 
|  | candidate_cost = cost; | 
|  | accumulated_candidate_model_cost_change = 0.0; | 
|  | } | 
|  |  | 
|  | // At this point we have made too many non-monotonic steps and | 
|  | // we are going to reset the value of the reference iterate so | 
|  | // as to force the algorithm to descend. | 
|  | // | 
|  | // This is the case because the candidate iterate has a value | 
|  | // greater than minimum_cost but smaller than the reference | 
|  | // iterate. | 
|  | if (num_consecutive_nonmonotonic_steps == | 
|  | options.max_consecutive_nonmonotonic_steps) { | 
|  | VLOG_IF(2, is_not_silent) | 
|  | << "Resetting the reference point to the candidate point"; | 
|  | reference_cost = candidate_cost; | 
|  | accumulated_reference_model_cost_change = | 
|  | accumulated_candidate_model_cost_change; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | ++summary->num_unsuccessful_steps; | 
|  | if (iteration_summary.step_is_valid) { | 
|  | strategy->StepRejected(iteration_summary.relative_decrease); | 
|  | } else { | 
|  | strategy->StepIsInvalid(); | 
|  | } | 
|  | } | 
|  |  | 
|  | iteration_summary.cost = cost + summary->fixed_cost; | 
|  | iteration_summary.trust_region_radius = strategy->Radius(); | 
|  | iteration_summary.iteration_time_in_seconds = | 
|  | WallTimeInSeconds() - iteration_start_time; | 
|  | iteration_summary.cumulative_time_in_seconds = | 
|  | WallTimeInSeconds() - start_time | 
|  | + summary->preprocessor_time_in_seconds; | 
|  | summary->iterations.push_back(iteration_summary); | 
|  |  | 
|  | // If the step was successful, check for the gradient norm | 
|  | // collapsing to zero, and if the step is unsuccessful then check | 
|  | // if the trust region radius has collapsed to zero. | 
|  | // | 
|  | // For correctness (Number of IterationSummary objects, correct | 
|  | // final cost, and state update) these convergence tests need to | 
|  | // be performed at the end of the iteration. | 
|  | if (iteration_summary.step_is_successful) { | 
|  | // Gradient norm can only go down in successful steps. | 
|  | if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) { | 
|  | summary->message = StringPrintf("Gradient tolerance reached. " | 
|  | "Gradient max norm: %e <= %e", | 
|  | iteration_summary.gradient_max_norm, | 
|  | options_.gradient_tolerance); | 
|  | summary->termination_type = CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // Trust region radius can only go down if the step if | 
|  | // unsuccessful. | 
|  | if (iteration_summary.trust_region_radius < | 
|  | options_.min_trust_region_radius) { | 
|  | summary->message = "Termination. Minimum trust region radius reached."; | 
|  | summary->termination_type = CONVERGENCE; | 
|  | VLOG_IF(1, is_not_silent) << summary->message; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |