| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Copyright (c) 2014 libmv authors. | 
 | // | 
 | // Permission is hereby granted, free of charge, to any person obtaining a copy | 
 | // of this software and associated documentation files (the "Software"), to | 
 | // deal in the Software without restriction, including without limitation the | 
 | // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or | 
 | // sell copies of the Software, and to permit persons to whom the Software is | 
 | // furnished to do so, subject to the following conditions: | 
 | // | 
 | // The above copyright notice and this permission notice shall be included in | 
 | // all copies or substantial portions of the Software. | 
 | // | 
 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | 
 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
 | // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | 
 | // IN THE SOFTWARE. | 
 | // | 
 | // Author: sergey.vfx@gmail.com (Sergey Sharybin) | 
 | // | 
 | // This file demonstrates solving for a homography between two sets of points. | 
 | // A homography describes a transformation between a sets of points on a plane, | 
 | // perspectively projected into two images. The first step is to solve a | 
 | // homogeneous system of equations via singular value decompposition, giving an | 
 | // algebraic solution for the homography, then solving for a final solution by | 
 | // minimizing the symmetric transfer error in image space with Ceres (called the | 
 | // Gold Standard Solution in "Multiple View Geometry"). The routines are based on | 
 | // the routines from the Libmv library. | 
 | // | 
 | // This example demonstrates custom exit criterion by having a callback check | 
 | // for image-space error. | 
 |  | 
 | #include "ceres/ceres.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | typedef Eigen::NumTraits<double> EigenDouble; | 
 |  | 
 | typedef Eigen::MatrixXd Mat; | 
 | typedef Eigen::VectorXd Vec; | 
 | typedef Eigen::Matrix<double, 3, 3> Mat3; | 
 | typedef Eigen::Matrix<double, 2, 1> Vec2; | 
 | typedef Eigen::Matrix<double, Eigen::Dynamic,  8> MatX8; | 
 | typedef Eigen::Vector3d Vec3; | 
 |  | 
 | namespace { | 
 |  | 
 | // This structure contains options that controls how the homography | 
 | // estimation operates. | 
 | // | 
 | // Defaults should be suitable for a wide range of use cases, but | 
 | // better performance and accuracy might require tweaking. | 
 | struct EstimateHomographyOptions { | 
 |   // Default settings for homography estimation which should be suitable | 
 |   // for a wide range of use cases. | 
 |   EstimateHomographyOptions() | 
 |     :  max_num_iterations(50), | 
 |        expected_average_symmetric_distance(1e-16) {} | 
 |  | 
 |   // Maximal number of iterations for the refinement step. | 
 |   int max_num_iterations; | 
 |  | 
 |   // Expected average of symmetric geometric distance between | 
 |   // actual destination points and original ones transformed by | 
 |   // estimated homography matrix. | 
 |   // | 
 |   // Refinement will finish as soon as average of symmetric | 
 |   // geometric distance is less or equal to this value. | 
 |   // | 
 |   // This distance is measured in the same units as input points are. | 
 |   double expected_average_symmetric_distance; | 
 | }; | 
 |  | 
 | // Calculate symmetric geometric cost terms: | 
 | // | 
 | // forward_error = D(H * x1, x2) | 
 | // backward_error = D(H^-1 * x2, x1) | 
 | // | 
 | // Templated to be used with autodifferenciation. | 
 | template <typename T> | 
 | void SymmetricGeometricDistanceTerms(const Eigen::Matrix<T, 3, 3> &H, | 
 |                                      const Eigen::Matrix<T, 2, 1> &x1, | 
 |                                      const Eigen::Matrix<T, 2, 1> &x2, | 
 |                                      T forward_error[2], | 
 |                                      T backward_error[2]) { | 
 |   typedef Eigen::Matrix<T, 3, 1> Vec3; | 
 |   Vec3 x(x1(0), x1(1), T(1.0)); | 
 |   Vec3 y(x2(0), x2(1), T(1.0)); | 
 |  | 
 |   Vec3 H_x = H * x; | 
 |   Vec3 Hinv_y = H.inverse() * y; | 
 |  | 
 |   H_x /= H_x(2); | 
 |   Hinv_y /= Hinv_y(2); | 
 |  | 
 |   forward_error[0] = H_x(0) - y(0); | 
 |   forward_error[1] = H_x(1) - y(1); | 
 |   backward_error[0] = Hinv_y(0) - x(0); | 
 |   backward_error[1] = Hinv_y(1) - x(1); | 
 | } | 
 |  | 
 | // Calculate symmetric geometric cost: | 
 | // | 
 | //   D(H * x1, x2)^2 + D(H^-1 * x2, x1)^2 | 
 | // | 
 | double SymmetricGeometricDistance(const Mat3 &H, | 
 |                                   const Vec2 &x1, | 
 |                                   const Vec2 &x2) { | 
 |   Vec2 forward_error, backward_error; | 
 |   SymmetricGeometricDistanceTerms<double>(H, | 
 |                                           x1, | 
 |                                           x2, | 
 |                                           forward_error.data(), | 
 |                                           backward_error.data()); | 
 |   return forward_error.squaredNorm() + | 
 |          backward_error.squaredNorm(); | 
 | } | 
 |  | 
 | // A parameterization of the 2D homography matrix that uses 8 parameters so | 
 | // that the matrix is normalized (H(2,2) == 1). | 
 | // The homography matrix H is built from a list of 8 parameters (a, b,...g, h) | 
 | // as follows | 
 | // | 
 | //         |a b c| | 
 | //     H = |d e f| | 
 | //         |g h 1| | 
 | // | 
 | template<typename T = double> | 
 | class Homography2DNormalizedParameterization { | 
 |  public: | 
 |   typedef Eigen::Matrix<T, 8, 1> Parameters;     // a, b, ... g, h | 
 |   typedef Eigen::Matrix<T, 3, 3> Parameterized;  // H | 
 |  | 
 |   // Convert from the 8 parameters to a H matrix. | 
 |   static void To(const Parameters &p, Parameterized *h) { | 
 |     *h << p(0), p(1), p(2), | 
 |           p(3), p(4), p(5), | 
 |           p(6), p(7), 1.0; | 
 |   } | 
 |  | 
 |   // Convert from a H matrix to the 8 parameters. | 
 |   static void From(const Parameterized &h, Parameters *p) { | 
 |     *p << h(0, 0), h(0, 1), h(0, 2), | 
 |           h(1, 0), h(1, 1), h(1, 2), | 
 |           h(2, 0), h(2, 1); | 
 |   } | 
 | }; | 
 |  | 
 | // 2D Homography transformation estimation in the case that points are in | 
 | // euclidean coordinates. | 
 | // | 
 | //   x = H y | 
 | // | 
 | // x and y vector must have the same direction, we could write | 
 | // | 
 | //   crossproduct(|x|, * H * |y| ) = |0| | 
 | // | 
 | //   | 0 -1  x2|   |a b c|   |y1|    |0| | 
 | //   | 1  0 -x1| * |d e f| * |y2| =  |0| | 
 | //   |-x2  x1 0|   |g h 1|   |1 |    |0| | 
 | // | 
 | // That gives: | 
 | // | 
 | //   (-d+x2*g)*y1    + (-e+x2*h)*y2 + -f+x2          |0| | 
 | //   (a-x1*g)*y1     + (b-x1*h)*y2  + c-x1         = |0| | 
 | //   (-x2*a+x1*d)*y1 + (-x2*b+x1*e)*y2 + -x2*c+x1*f  |0| | 
 | // | 
 | bool Homography2DFromCorrespondencesLinearEuc( | 
 |     const Mat &x1, | 
 |     const Mat &x2, | 
 |     Mat3 *H, | 
 |     double expected_precision) { | 
 |   assert(2 == x1.rows()); | 
 |   assert(4 <= x1.cols()); | 
 |   assert(x1.rows() == x2.rows()); | 
 |   assert(x1.cols() == x2.cols()); | 
 |  | 
 |   int n = x1.cols(); | 
 |   MatX8 L = Mat::Zero(n * 3, 8); | 
 |   Mat b = Mat::Zero(n * 3, 1); | 
 |   for (int i = 0; i < n; ++i) { | 
 |     int j = 3 * i; | 
 |     L(j, 0) =  x1(0, i);             // a | 
 |     L(j, 1) =  x1(1, i);             // b | 
 |     L(j, 2) =  1.0;                  // c | 
 |     L(j, 6) = -x2(0, i) * x1(0, i);  // g | 
 |     L(j, 7) = -x2(0, i) * x1(1, i);  // h | 
 |     b(j, 0) =  x2(0, i);             // i | 
 |  | 
 |     ++j; | 
 |     L(j, 3) =  x1(0, i);             // d | 
 |     L(j, 4) =  x1(1, i);             // e | 
 |     L(j, 5) =  1.0;                  // f | 
 |     L(j, 6) = -x2(1, i) * x1(0, i);  // g | 
 |     L(j, 7) = -x2(1, i) * x1(1, i);  // h | 
 |     b(j, 0) =  x2(1, i);             // i | 
 |  | 
 |     // This ensures better stability | 
 |     // TODO(julien) make a lite version without this 3rd set | 
 |     ++j; | 
 |     L(j, 0) =  x2(1, i) * x1(0, i);  // a | 
 |     L(j, 1) =  x2(1, i) * x1(1, i);  // b | 
 |     L(j, 2) =  x2(1, i);             // c | 
 |     L(j, 3) = -x2(0, i) * x1(0, i);  // d | 
 |     L(j, 4) = -x2(0, i) * x1(1, i);  // e | 
 |     L(j, 5) = -x2(0, i);             // f | 
 |   } | 
 |   // Solve Lx=B | 
 |   const Vec h = L.fullPivLu().solve(b); | 
 |   Homography2DNormalizedParameterization<double>::To(h, H); | 
 |   return (L * h).isApprox(b, expected_precision); | 
 | } | 
 |  | 
 | // Cost functor which computes symmetric geometric distance | 
 | // used for homography matrix refinement. | 
 | class HomographySymmetricGeometricCostFunctor { | 
 |  public: | 
 |   HomographySymmetricGeometricCostFunctor(const Vec2 &x, | 
 |                                           const Vec2 &y) | 
 |       : x_(x), y_(y) { } | 
 |  | 
 |   template<typename T> | 
 |   bool operator()(const T* homography_parameters, T* residuals) const { | 
 |     typedef Eigen::Matrix<T, 3, 3> Mat3; | 
 |     typedef Eigen::Matrix<T, 2, 1> Vec2; | 
 |  | 
 |     Mat3 H(homography_parameters); | 
 |     Vec2 x(T(x_(0)), T(x_(1))); | 
 |     Vec2 y(T(y_(0)), T(y_(1))); | 
 |  | 
 |     SymmetricGeometricDistanceTerms<T>(H, | 
 |                                        x, | 
 |                                        y, | 
 |                                        &residuals[0], | 
 |                                        &residuals[2]); | 
 |     return true; | 
 |   } | 
 |  | 
 |   const Vec2 x_; | 
 |   const Vec2 y_; | 
 | }; | 
 |  | 
 | // Termination checking callback. This is needed to finish the | 
 | // optimization when an absolute error threshold is met, as opposed | 
 | // to Ceres's function_tolerance, which provides for finishing when | 
 | // successful steps reduce the cost function by a fractional amount. | 
 | // In this case, the callback checks for the absolute average reprojection | 
 | // error and terminates when it's below a threshold (for example all | 
 | // points < 0.5px error). | 
 | class TerminationCheckingCallback : public ceres::IterationCallback { | 
 |  public: | 
 |   TerminationCheckingCallback(const Mat &x1, const Mat &x2, | 
 |                               const EstimateHomographyOptions &options, | 
 |                               Mat3 *H) | 
 |       : options_(options), x1_(x1), x2_(x2), H_(H) {} | 
 |  | 
 |   virtual ceres::CallbackReturnType operator()( | 
 |       const ceres::IterationSummary& summary) { | 
 |     // If the step wasn't successful, there's nothing to do. | 
 |     if (!summary.step_is_successful) { | 
 |       return ceres::SOLVER_CONTINUE; | 
 |     } | 
 |  | 
 |     // Calculate average of symmetric geometric distance. | 
 |     double average_distance = 0.0; | 
 |     for (int i = 0; i < x1_.cols(); i++) { | 
 |       average_distance += SymmetricGeometricDistance(*H_, | 
 |                                                      x1_.col(i), | 
 |                                                      x2_.col(i)); | 
 |     } | 
 |     average_distance /= x1_.cols(); | 
 |  | 
 |     if (average_distance <= options_.expected_average_symmetric_distance) { | 
 |       return ceres::SOLVER_TERMINATE_SUCCESSFULLY; | 
 |     } | 
 |  | 
 |     return ceres::SOLVER_CONTINUE; | 
 |   } | 
 |  | 
 |  private: | 
 |   const EstimateHomographyOptions &options_; | 
 |   const Mat &x1_; | 
 |   const Mat &x2_; | 
 |   Mat3 *H_; | 
 | }; | 
 |  | 
 | bool EstimateHomography2DFromCorrespondences( | 
 |     const Mat &x1, | 
 |     const Mat &x2, | 
 |     const EstimateHomographyOptions &options, | 
 |     Mat3 *H) { | 
 |   assert(2 == x1.rows()); | 
 |   assert(4 <= x1.cols()); | 
 |   assert(x1.rows() == x2.rows()); | 
 |   assert(x1.cols() == x2.cols()); | 
 |  | 
 |   // Step 1: Algebraic homography estimation. | 
 |   // Assume algebraic estimation always succeeds. | 
 |   Homography2DFromCorrespondencesLinearEuc(x1, | 
 |                                            x2, | 
 |                                            H, | 
 |                                            EigenDouble::dummy_precision()); | 
 |  | 
 |   LOG(INFO) << "Estimated matrix after algebraic estimation:\n" << *H; | 
 |  | 
 |   // Step 2: Refine matrix using Ceres minimizer. | 
 |   ceres::Problem problem; | 
 |   for (int i = 0; i < x1.cols(); i++) { | 
 |     HomographySymmetricGeometricCostFunctor | 
 |         *homography_symmetric_geometric_cost_function = | 
 |             new HomographySymmetricGeometricCostFunctor(x1.col(i), | 
 |                                                         x2.col(i)); | 
 |  | 
 |     problem.AddResidualBlock( | 
 |         new ceres::AutoDiffCostFunction< | 
 |             HomographySymmetricGeometricCostFunctor, | 
 |             4,  // num_residuals | 
 |             9>(homography_symmetric_geometric_cost_function), | 
 |         NULL, | 
 |         H->data()); | 
 |   } | 
 |  | 
 |   // Configure the solve. | 
 |   ceres::Solver::Options solver_options; | 
 |   solver_options.linear_solver_type = ceres::DENSE_QR; | 
 |   solver_options.max_num_iterations = options.max_num_iterations; | 
 |   solver_options.update_state_every_iteration = true; | 
 |  | 
 |   // Terminate if the average symmetric distance is good enough. | 
 |   TerminationCheckingCallback callback(x1, x2, options, H); | 
 |   solver_options.callbacks.push_back(&callback); | 
 |  | 
 |   // Run the solve. | 
 |   ceres::Solver::Summary summary; | 
 |   ceres::Solve(solver_options, &problem, &summary); | 
 |  | 
 |   LOG(INFO) << "Summary:\n" << summary.FullReport(); | 
 |   LOG(INFO) << "Final refined matrix:\n" << *H; | 
 |  | 
 |   return summary.IsSolutionUsable(); | 
 | } | 
 |  | 
 | }  // namespace libmv | 
 |  | 
 | int main(int argc, char **argv) { | 
 |   google::InitGoogleLogging(argv[0]); | 
 |  | 
 |   Mat x1(2, 100); | 
 |   for (int i = 0; i < x1.cols(); ++i) { | 
 |     x1(0, i) = rand() % 1024; | 
 |     x1(1, i) = rand() % 1024; | 
 |   } | 
 |  | 
 |   Mat3 homography_matrix; | 
 |   // This matrix has been dumped from a Blender test file of plane tracking. | 
 |   homography_matrix << 1.243715, -0.461057, -111.964454, | 
 |                        0.0,       0.617589, -192.379252, | 
 |                        0.0,      -0.000983,    1.0; | 
 |  | 
 |   Mat x2 = x1; | 
 |   for (int i = 0; i < x2.cols(); ++i) { | 
 |     Vec3 homogenous_x1 = Vec3(x1(0, i), x1(1, i), 1.0); | 
 |     Vec3 homogenous_x2 = homography_matrix * homogenous_x1; | 
 |     x2(0, i) = homogenous_x2(0) / homogenous_x2(2); | 
 |     x2(1, i) = homogenous_x2(1) / homogenous_x2(2); | 
 |  | 
 |     // Apply some noise so algebraic estimation is not good enough. | 
 |     x2(0, i) += static_cast<double>(rand() % 1000) / 5000.0; | 
 |     x2(1, i) += static_cast<double>(rand() % 1000) / 5000.0; | 
 |   } | 
 |  | 
 |   Mat3 estimated_matrix; | 
 |  | 
 |   EstimateHomographyOptions options; | 
 |   options.expected_average_symmetric_distance = 0.02; | 
 |   EstimateHomography2DFromCorrespondences(x1, x2, options, &estimated_matrix); | 
 |  | 
 |   // Normalize the matrix for easier comparison. | 
 |   estimated_matrix /= estimated_matrix(2 ,2); | 
 |  | 
 |   std::cout << "Original matrix:\n" << homography_matrix << "\n"; | 
 |   std::cout << "Estimated matrix:\n" << estimated_matrix << "\n"; | 
 |  | 
 |   return EXIT_SUCCESS; | 
 | } |