|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: keir@google.com (Keir Mierle) | 
|  | // | 
|  | // Tests shared across evaluators. The tests try all combinations of linear | 
|  | // solver and num_eliminate_blocks (for schur-based solvers). | 
|  |  | 
|  | #include "ceres/evaluator.h" | 
|  |  | 
|  | #include "gtest/gtest.h" | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/problem_impl.h" | 
|  | #include "ceres/program.h" | 
|  | #include "ceres/sparse_matrix.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  | #include "ceres/local_parameterization.h" | 
|  | #include "ceres/types.h" | 
|  | #include "ceres/sized_cost_function.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | // TODO(keir): Consider pushing this into a common test utils file. | 
|  | template<int kFactor, int kNumResiduals, | 
|  | int N0 = 0, int N1 = 0, int N2 = 0, bool kSucceeds = true> | 
|  | class ParameterIgnoringCostFunction | 
|  | : public SizedCostFunction<kNumResiduals, N0, N1, N2> { | 
|  | typedef SizedCostFunction<kNumResiduals, N0, N1, N2> Base; | 
|  | public: | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | for (int i = 0; i < Base::num_residuals(); ++i) { | 
|  | residuals[i] = i + 1; | 
|  | } | 
|  | if (jacobians) { | 
|  | for (int k = 0; k < Base::parameter_block_sizes().size(); ++k) { | 
|  | // The jacobians here are full sized, but they are transformed in the | 
|  | // evaluator into the "local" jacobian. In the tests, the "subset | 
|  | // constant" parameterization is used, which should pick out columns | 
|  | // from these jacobians. Put values in the jacobian that make this | 
|  | // obvious; in particular, make the jacobians like this: | 
|  | // | 
|  | //   1 2 3 4 ... | 
|  | //   1 2 3 4 ...   .*  kFactor | 
|  | //   1 2 3 4 ... | 
|  | // | 
|  | // where the multiplication by kFactor makes it easier to distinguish | 
|  | // between Jacobians of different residuals for the same parameter. | 
|  | if (jacobians[k] != NULL) { | 
|  | MatrixRef jacobian(jacobians[k], | 
|  | Base::num_residuals(), | 
|  | Base::parameter_block_sizes()[k]); | 
|  | for (int j = 0; j < Base::parameter_block_sizes()[k]; ++j) { | 
|  | jacobian.col(j).setConstant(kFactor * (j + 1)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return kSucceeds; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct EvaluatorTest | 
|  | : public ::testing::TestWithParam<pair<LinearSolverType, int> > { | 
|  | Evaluator* CreateEvaluator(Program* program) { | 
|  | // This program is straight from the ProblemImpl, and so has no index/offset | 
|  | // yet; compute it here as required by the evalutor implementations. | 
|  | program->SetParameterOffsetsAndIndex(); | 
|  |  | 
|  | VLOG(1) << "Creating evaluator with type: " << GetParam().first | 
|  | << " and num_eliminate_blocks: " << GetParam().second; | 
|  | Evaluator::Options options; | 
|  | options.linear_solver_type = GetParam().first; | 
|  | options.num_eliminate_blocks = GetParam().second; | 
|  | string error; | 
|  | return Evaluator::Create(options, program, &error); | 
|  | } | 
|  | }; | 
|  |  | 
|  | void SetSparseMatrixConstant(SparseMatrix* sparse_matrix, double value) { | 
|  | VectorRef(sparse_matrix->mutable_values(), | 
|  | sparse_matrix->num_nonzeros()).setConstant(value); | 
|  | } | 
|  |  | 
|  | TEST_P(EvaluatorTest, SingleResidualProblem) { | 
|  | ProblemImpl problem; | 
|  |  | 
|  | // The values are ignored completely by the cost function. | 
|  | double x[2]; | 
|  | double y[3]; | 
|  | double z[4]; | 
|  | double state[9]; | 
|  |  | 
|  | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>, | 
|  | NULL, | 
|  | x, y, z); | 
|  |  | 
|  | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); | 
|  | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
|  | ASSERT_EQ(3, jacobian->num_rows()); | 
|  | ASSERT_EQ(9, jacobian->num_cols()); | 
|  |  | 
|  | // Cost only; no residuals and no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); | 
|  | EXPECT_EQ(7.0, cost); | 
|  | } | 
|  |  | 
|  | // Cost and residuals, no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[3] = { -2, -2, -2 }; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); | 
|  | EXPECT_EQ(7.0, cost); | 
|  | EXPECT_EQ(1.0, residuals[0]); | 
|  | EXPECT_EQ(2.0, residuals[1]); | 
|  | EXPECT_EQ(3.0, residuals[2]); | 
|  | } | 
|  |  | 
|  | // Cost, residuals, and jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[3] = { -2, -2, -2 }; | 
|  | SetSparseMatrixConstant(jacobian.get(), -1); | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); | 
|  | EXPECT_EQ(7.0, cost); | 
|  | EXPECT_EQ(1.0, residuals[0]); | 
|  | EXPECT_EQ(2.0, residuals[1]); | 
|  | EXPECT_EQ(3.0, residuals[2]); | 
|  |  | 
|  | Matrix actual_jacobian; | 
|  | jacobian->ToDenseMatrix(&actual_jacobian); | 
|  |  | 
|  | Matrix expected_jacobian(3, 9); | 
|  | expected_jacobian | 
|  | // x       y          z | 
|  | << 1, 2,   1, 2, 3,   1, 2, 3, 4, | 
|  | 1, 2,   1, 2, 3,   1, 2, 3, 4, | 
|  | 1, 2,   1, 2, 3,   1, 2, 3, 4; | 
|  |  | 
|  | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) | 
|  | << "Actual:\n" << actual_jacobian | 
|  | << "\nExpected:\n" << expected_jacobian; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(EvaluatorTest, SingleResidualProblemWithPermutedParameters) { | 
|  | ProblemImpl problem; | 
|  |  | 
|  | // The values are ignored completely by the cost function. | 
|  | double x[2]; | 
|  | double y[3]; | 
|  | double z[4]; | 
|  | double state[9]; | 
|  |  | 
|  | // Add the parameters in explicit order to force the ordering in the program. | 
|  | problem.AddParameterBlock(x,  2); | 
|  | problem.AddParameterBlock(y,  3); | 
|  | problem.AddParameterBlock(z,  4); | 
|  |  | 
|  | // Then use a cost function which is similar to the others, but swap around | 
|  | // the ordering of the parameters to the cost function. This shouldn't affect | 
|  | // the jacobian evaluation, but requires explicit handling in the evaluators. | 
|  | // At one point the compressed row evaluator had a bug that went undetected | 
|  | // for a long time, since by chance most users added parameters to the problem | 
|  | // in the same order that they occured as parameters to a cost function. | 
|  | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 4, 3, 2>, | 
|  | NULL, | 
|  | z, y, x); | 
|  |  | 
|  | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); | 
|  | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
|  | ASSERT_EQ(3, jacobian->num_rows()); | 
|  | ASSERT_EQ(9, jacobian->num_cols()); | 
|  |  | 
|  | // Cost only; no residuals and no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); | 
|  | EXPECT_EQ(7.0, cost); | 
|  | } | 
|  |  | 
|  | // Cost and residuals, no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[3] = { -2, -2, -2 }; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); | 
|  | EXPECT_EQ(7.0, cost); | 
|  | EXPECT_EQ(1.0, residuals[0]); | 
|  | EXPECT_EQ(2.0, residuals[1]); | 
|  | EXPECT_EQ(3.0, residuals[2]); | 
|  | } | 
|  |  | 
|  | // Cost, residuals, and jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[3] = { -2, -2, -2 }; | 
|  | SetSparseMatrixConstant(jacobian.get(), -1); | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); | 
|  | EXPECT_EQ(7.0, cost); | 
|  | EXPECT_EQ(1.0, residuals[0]); | 
|  | EXPECT_EQ(2.0, residuals[1]); | 
|  | EXPECT_EQ(3.0, residuals[2]); | 
|  |  | 
|  | Matrix actual_jacobian; | 
|  | jacobian->ToDenseMatrix(&actual_jacobian); | 
|  |  | 
|  | Matrix expected_jacobian(3, 9); | 
|  | expected_jacobian | 
|  | // x       y          z | 
|  | << 1, 2,   1, 2, 3,   1, 2, 3, 4, | 
|  | 1, 2,   1, 2, 3,   1, 2, 3, 4, | 
|  | 1, 2,   1, 2, 3,   1, 2, 3, 4; | 
|  |  | 
|  | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) | 
|  | << "Actual:\n" << actual_jacobian | 
|  | << "\nExpected:\n" << expected_jacobian; | 
|  | } | 
|  | } | 
|  | TEST_P(EvaluatorTest, SingleResidualProblemWithNuisanceParameters) { | 
|  | ProblemImpl problem; | 
|  |  | 
|  | // The values are ignored completely by the cost function. | 
|  | double x[2]; | 
|  | double y[3]; | 
|  | double z[4]; | 
|  | double state[9]; | 
|  |  | 
|  | // These parameters are not used. | 
|  | double w1[2]; | 
|  | double w2[1]; | 
|  | double w3[1]; | 
|  | double w4[3]; | 
|  |  | 
|  | // Add the parameters in a mixed order so the Jacobian is "checkered" with the | 
|  | // values from the other parameters. | 
|  | problem.AddParameterBlock(w1, 2); | 
|  | problem.AddParameterBlock(x,  2); | 
|  | problem.AddParameterBlock(w2, 1); | 
|  | problem.AddParameterBlock(y,  3); | 
|  | problem.AddParameterBlock(w3, 1); | 
|  | problem.AddParameterBlock(z,  4); | 
|  | problem.AddParameterBlock(w4, 3); | 
|  |  | 
|  | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>, | 
|  | NULL, | 
|  | x, y, z); | 
|  |  | 
|  | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); | 
|  | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
|  | ASSERT_EQ(3, jacobian->num_rows()); | 
|  | ASSERT_EQ(16, jacobian->num_cols()); | 
|  |  | 
|  | // Cost only; no residuals and no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); | 
|  | EXPECT_EQ(7.0, cost); | 
|  | } | 
|  |  | 
|  | // Cost and residuals, no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[3] = { -2, -2, -2 }; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); | 
|  | EXPECT_EQ(7.0, cost); | 
|  | EXPECT_EQ(1.0, residuals[0]); | 
|  | EXPECT_EQ(2.0, residuals[1]); | 
|  | EXPECT_EQ(3.0, residuals[2]); | 
|  | } | 
|  |  | 
|  | // Cost, residuals, and jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[3] = { -2, -2, -2 }; | 
|  | SetSparseMatrixConstant(jacobian.get(), -1); | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); | 
|  | EXPECT_EQ(7.0, cost); | 
|  | EXPECT_EQ(1.0, residuals[0]); | 
|  | EXPECT_EQ(2.0, residuals[1]); | 
|  | EXPECT_EQ(3.0, residuals[2]); | 
|  |  | 
|  | Matrix actual_jacobian; | 
|  | jacobian->ToDenseMatrix(&actual_jacobian); | 
|  |  | 
|  | Matrix expected_jacobian(3, 16); | 
|  | expected_jacobian | 
|  | // w1       x        w2    y           w2    z              w3 | 
|  | << 0, 0,    1, 2,    0,    1, 2, 3,    0,    1, 2, 3, 4,    0, 0, 0, | 
|  | 0, 0,    1, 2,    0,    1, 2, 3,    0,    1, 2, 3, 4,    0, 0, 0, | 
|  | 0, 0,    1, 2,    0,    1, 2, 3,    0,    1, 2, 3, 4,    0, 0, 0; | 
|  |  | 
|  | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) | 
|  | << "Actual:\n" << actual_jacobian | 
|  | << "\nExpected:\n" << expected_jacobian; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(EvaluatorTest, MultipleResidualProblem) { | 
|  | ProblemImpl problem; | 
|  |  | 
|  | // The values are ignored completely by the cost function. | 
|  | double x[2]; | 
|  | double y[3]; | 
|  | double z[4]; | 
|  | double state[9]; | 
|  |  | 
|  | // Add the parameters in explicit order to force the ordering in the program. | 
|  | problem.AddParameterBlock(x,  2); | 
|  | problem.AddParameterBlock(y,  3); | 
|  | problem.AddParameterBlock(z,  4); | 
|  |  | 
|  | // f(x, y) in R^2 | 
|  | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>, | 
|  | NULL, | 
|  | x, y); | 
|  |  | 
|  | // g(x, z) in R^3 | 
|  | problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>, | 
|  | NULL, | 
|  | x, z); | 
|  |  | 
|  | // h(y, z) in R^4 | 
|  | problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>, | 
|  | NULL, | 
|  | y, z); | 
|  |  | 
|  | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); | 
|  | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
|  | ASSERT_EQ(9, jacobian->num_rows()); | 
|  | ASSERT_EQ(9, jacobian->num_cols()); | 
|  |  | 
|  | //                      f       g           h | 
|  | double expected_cost = (1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0; | 
|  |  | 
|  |  | 
|  | // Cost only; no residuals and no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); | 
|  | EXPECT_EQ(expected_cost, cost); | 
|  | } | 
|  |  | 
|  | // Cost and residuals, no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[9] = { -2, -2, -2, -2, -2, -2, -2, -2, -2 }; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); | 
|  | EXPECT_EQ(expected_cost, cost); | 
|  | EXPECT_EQ(1.0, residuals[0]); | 
|  | EXPECT_EQ(2.0, residuals[1]); | 
|  | EXPECT_EQ(1.0, residuals[2]); | 
|  | EXPECT_EQ(2.0, residuals[3]); | 
|  | EXPECT_EQ(3.0, residuals[4]); | 
|  | EXPECT_EQ(1.0, residuals[5]); | 
|  | EXPECT_EQ(2.0, residuals[6]); | 
|  | EXPECT_EQ(3.0, residuals[7]); | 
|  | EXPECT_EQ(4.0, residuals[8]); | 
|  | } | 
|  |  | 
|  | // Cost, residuals, and jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[9] = { -2, -2, -2, -2, -2, -2, -2, -2, -2 }; | 
|  | SetSparseMatrixConstant(jacobian.get(), -1); | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); | 
|  | EXPECT_EQ(expected_cost, cost); | 
|  | EXPECT_EQ(1.0, residuals[0]); | 
|  | EXPECT_EQ(2.0, residuals[1]); | 
|  | EXPECT_EQ(1.0, residuals[2]); | 
|  | EXPECT_EQ(2.0, residuals[3]); | 
|  | EXPECT_EQ(3.0, residuals[4]); | 
|  | EXPECT_EQ(1.0, residuals[5]); | 
|  | EXPECT_EQ(2.0, residuals[6]); | 
|  | EXPECT_EQ(3.0, residuals[7]); | 
|  | EXPECT_EQ(4.0, residuals[8]); | 
|  |  | 
|  | Matrix actual_jacobian; | 
|  | jacobian->ToDenseMatrix(&actual_jacobian); | 
|  |  | 
|  | Matrix expected_jacobian(9, 9); | 
|  | expected_jacobian << | 
|  | //                x        y           z | 
|  | /* f(x, y) */ 1, 2,    1, 2, 3,    0, 0, 0, 0, | 
|  | 1, 2,    1, 2, 3,    0, 0, 0, 0, | 
|  |  | 
|  | /* g(x, z) */ 2, 4,    0, 0, 0,    2, 4, 6, 8, | 
|  | 2, 4,    0, 0, 0,    2, 4, 6, 8, | 
|  | 2, 4,    0, 0, 0,    2, 4, 6, 8, | 
|  |  | 
|  | /* h(y, z) */ 0, 0,    3, 6, 9,    3, 6, 9, 12, | 
|  | 0, 0,    3, 6, 9,    3, 6, 9, 12, | 
|  | 0, 0,    3, 6, 9,    3, 6, 9, 12, | 
|  | 0, 0,    3, 6, 9,    3, 6, 9, 12; | 
|  |  | 
|  | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) | 
|  | << "Actual:\n" << actual_jacobian | 
|  | << "\nExpected:\n" << expected_jacobian; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(EvaluatorTest, MultipleResidualsWithLocalParameterizations) { | 
|  | ProblemImpl problem; | 
|  |  | 
|  | // The values are ignored completely by the cost function. | 
|  | double x[2]; | 
|  | double y[3]; | 
|  | double z[4]; | 
|  | double state[9]; | 
|  |  | 
|  | // Add the parameters in explicit order to force the ordering in the program. | 
|  | problem.AddParameterBlock(x,  2); | 
|  |  | 
|  | // Fix y's first dimension. | 
|  | vector<int> y_fixed; | 
|  | y_fixed.push_back(0); | 
|  | problem.AddParameterBlock(y, 3, new SubsetParameterization(3, y_fixed)); | 
|  |  | 
|  | // Fix z's second dimension. | 
|  | vector<int> z_fixed; | 
|  | z_fixed.push_back(1); | 
|  | problem.AddParameterBlock(z, 4, new SubsetParameterization(4, z_fixed)); | 
|  |  | 
|  | // f(x, y) in R^2 | 
|  | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>, | 
|  | NULL, | 
|  | x, y); | 
|  |  | 
|  | // g(x, z) in R^3 | 
|  | problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>, | 
|  | NULL, | 
|  | x, z); | 
|  |  | 
|  | // h(y, z) in R^4 | 
|  | problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>, | 
|  | NULL, | 
|  | y, z); | 
|  |  | 
|  | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); | 
|  | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
|  | ASSERT_EQ(9, jacobian->num_rows()); | 
|  | ASSERT_EQ(7, jacobian->num_cols()); | 
|  |  | 
|  | //                      f       g           h | 
|  | double expected_cost = (1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0; | 
|  |  | 
|  |  | 
|  | // Cost only; no residuals and no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); | 
|  | EXPECT_EQ(expected_cost, cost); | 
|  | } | 
|  |  | 
|  | // Cost and residuals, no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[9] = { -2, -2, -2, -2, -2, -2, -2, -2, -2 }; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); | 
|  | EXPECT_EQ(expected_cost, cost); | 
|  | EXPECT_EQ(1.0, residuals[0]); | 
|  | EXPECT_EQ(2.0, residuals[1]); | 
|  | EXPECT_EQ(1.0, residuals[2]); | 
|  | EXPECT_EQ(2.0, residuals[3]); | 
|  | EXPECT_EQ(3.0, residuals[4]); | 
|  | EXPECT_EQ(1.0, residuals[5]); | 
|  | EXPECT_EQ(2.0, residuals[6]); | 
|  | EXPECT_EQ(3.0, residuals[7]); | 
|  | EXPECT_EQ(4.0, residuals[8]); | 
|  | } | 
|  |  | 
|  | // Cost, residuals, and jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[9] = { -2, -2, -2, -2, -2, -2, -2, -2, -2 }; | 
|  | SetSparseMatrixConstant(jacobian.get(), -1); | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); | 
|  | EXPECT_EQ(expected_cost, cost); | 
|  | EXPECT_EQ(1.0, residuals[0]); | 
|  | EXPECT_EQ(2.0, residuals[1]); | 
|  | EXPECT_EQ(1.0, residuals[2]); | 
|  | EXPECT_EQ(2.0, residuals[3]); | 
|  | EXPECT_EQ(3.0, residuals[4]); | 
|  | EXPECT_EQ(1.0, residuals[5]); | 
|  | EXPECT_EQ(2.0, residuals[6]); | 
|  | EXPECT_EQ(3.0, residuals[7]); | 
|  | EXPECT_EQ(4.0, residuals[8]); | 
|  |  | 
|  | Matrix actual_jacobian; | 
|  | jacobian->ToDenseMatrix(&actual_jacobian); | 
|  |  | 
|  | // Note y and z are missing columns due to the subset parameterization. | 
|  | Matrix expected_jacobian(9, 7); | 
|  | expected_jacobian << | 
|  | //                x        y        z | 
|  | /* f(x, y) */ 1, 2,    2, 3,    0, 0, 0, | 
|  | 1, 2,    2, 3,    0, 0, 0, | 
|  |  | 
|  | /* g(x, z) */ 2, 4,    0, 0,    2, 6, 8, | 
|  | 2, 4,    0, 0,    2, 6, 8, | 
|  | 2, 4,    0, 0,    2, 6, 8, | 
|  |  | 
|  | /* h(y, z) */ 0, 0,    6, 9,    3, 9, 12, | 
|  | 0, 0,    6, 9,    3, 9, 12, | 
|  | 0, 0,    6, 9,    3, 9, 12, | 
|  | 0, 0,    6, 9,    3, 9, 12; | 
|  |  | 
|  | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) | 
|  | << "Actual:\n" << actual_jacobian | 
|  | << "\nExpected:\n" << expected_jacobian; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(EvaluatorTest, MultipleResidualProblemWithSomeConstantParameters) { | 
|  | ProblemImpl problem; | 
|  |  | 
|  | // The values are ignored completely by the cost function. | 
|  | double x[2]; | 
|  | double y[3]; | 
|  | double z[4]; | 
|  | double state[9]; | 
|  |  | 
|  | // Add the parameters in explicit order to force the ordering in the program. | 
|  | problem.AddParameterBlock(x,  2); | 
|  | problem.AddParameterBlock(y,  3); | 
|  | problem.AddParameterBlock(z,  4); | 
|  |  | 
|  | // f(x, y) in R^2 | 
|  | problem.AddResidualBlock(new ParameterIgnoringCostFunction<1, 2, 2, 3>, | 
|  | NULL, | 
|  | x, y); | 
|  |  | 
|  | // g(x, z) in R^3 | 
|  | problem.AddResidualBlock(new ParameterIgnoringCostFunction<2, 3, 2, 4>, | 
|  | NULL, | 
|  | x, z); | 
|  |  | 
|  | // h(y, z) in R^4 | 
|  | problem.AddResidualBlock(new ParameterIgnoringCostFunction<3, 4, 3, 4>, | 
|  | NULL, | 
|  | y, z); | 
|  |  | 
|  | // For this test, "z" is constant. | 
|  | problem.SetParameterBlockConstant(z); | 
|  |  | 
|  | // Create the reduced program which is missing the fixed "z" variable. | 
|  | // Normally, the preprocessing of the program that happens in solver_impl | 
|  | // takes care of this, but we don't want to invoke the solver here. | 
|  | Program reduced_program; | 
|  | *reduced_program.mutable_residual_blocks() = | 
|  | problem.program().residual_blocks(); | 
|  | *reduced_program.mutable_parameter_blocks() = | 
|  | problem.program().parameter_blocks(); | 
|  |  | 
|  | // "z" is the last parameter; pop it off. | 
|  | reduced_program.mutable_parameter_blocks()->pop_back(); | 
|  |  | 
|  | scoped_ptr<Evaluator> evaluator(CreateEvaluator(&reduced_program)); | 
|  | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
|  | ASSERT_EQ(9, jacobian->num_rows()); | 
|  | ASSERT_EQ(5, jacobian->num_cols()); | 
|  |  | 
|  | //                      f       g           h | 
|  | double expected_cost = (1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0; | 
|  |  | 
|  |  | 
|  | // Cost only; no residuals and no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); | 
|  | EXPECT_EQ(expected_cost, cost); | 
|  | } | 
|  |  | 
|  | // Cost and residuals, no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[9] = { -2, -2, -2, -2, -2, -2, -2, -2, -2 }; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); | 
|  | EXPECT_EQ(expected_cost, cost); | 
|  | EXPECT_EQ(1.0, residuals[0]); | 
|  | EXPECT_EQ(2.0, residuals[1]); | 
|  | EXPECT_EQ(1.0, residuals[2]); | 
|  | EXPECT_EQ(2.0, residuals[3]); | 
|  | EXPECT_EQ(3.0, residuals[4]); | 
|  | EXPECT_EQ(1.0, residuals[5]); | 
|  | EXPECT_EQ(2.0, residuals[6]); | 
|  | EXPECT_EQ(3.0, residuals[7]); | 
|  | EXPECT_EQ(4.0, residuals[8]); | 
|  | } | 
|  |  | 
|  | // Cost, residuals, and jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[9] = { -2, -2, -2, -2, -2, -2, -2, -2, -2 }; | 
|  | SetSparseMatrixConstant(jacobian.get(), -1); | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); | 
|  | EXPECT_EQ(expected_cost, cost); | 
|  | EXPECT_EQ(1.0, residuals[0]); | 
|  | EXPECT_EQ(2.0, residuals[1]); | 
|  | EXPECT_EQ(1.0, residuals[2]); | 
|  | EXPECT_EQ(2.0, residuals[3]); | 
|  | EXPECT_EQ(3.0, residuals[4]); | 
|  | EXPECT_EQ(1.0, residuals[5]); | 
|  | EXPECT_EQ(2.0, residuals[6]); | 
|  | EXPECT_EQ(3.0, residuals[7]); | 
|  | EXPECT_EQ(4.0, residuals[8]); | 
|  |  | 
|  | Matrix actual_jacobian; | 
|  | jacobian->ToDenseMatrix(&actual_jacobian); | 
|  |  | 
|  | Matrix expected_jacobian(9, 5); | 
|  | expected_jacobian << | 
|  | //                x        y | 
|  | /* f(x, y) */ 1, 2,    1, 2, 3, | 
|  | 1, 2,    1, 2, 3, | 
|  |  | 
|  | /* g(x, z) */ 2, 4,    0, 0, 0, | 
|  | 2, 4,    0, 0, 0, | 
|  | 2, 4,    0, 0, 0, | 
|  |  | 
|  | /* h(y, z) */ 0, 0,    3, 6, 9, | 
|  | 0, 0,    3, 6, 9, | 
|  | 0, 0,    3, 6, 9, | 
|  | 0, 0,    3, 6, 9; | 
|  |  | 
|  | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) | 
|  | << "Actual:\n" << actual_jacobian | 
|  | << "\nExpected:\n" << expected_jacobian; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_P(EvaluatorTest, EvaluatorAbortsForResidualsThatFailToEvaluate) { | 
|  | ProblemImpl problem; | 
|  |  | 
|  | // The values are ignored completely by the cost function. | 
|  | double x[2]; | 
|  | double y[3]; | 
|  | double z[4]; | 
|  | double state[9]; | 
|  |  | 
|  | // Switch the return value to failure. | 
|  | problem.AddResidualBlock( | 
|  | new ParameterIgnoringCostFunction<20, 3, 2, 3, 4, false>, NULL, x, y, z); | 
|  |  | 
|  | scoped_ptr<Evaluator> evaluator(CreateEvaluator(problem.mutable_program())); | 
|  | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
|  | double cost; | 
|  | EXPECT_FALSE(evaluator->Evaluate(state, &cost, NULL, NULL)); | 
|  | } | 
|  |  | 
|  | // In the pairs, the first argument is the linear solver type, and the second | 
|  | // argument is num_eliminate_blocks. Changing the num_eliminate_blocks only | 
|  | // makes sense for the schur-based solvers. | 
|  | // | 
|  | // Try all values of num_eliminate_blocks that make sense given that in the | 
|  | // tests a maximum of 4 parameter blocks are present. | 
|  | INSTANTIATE_TEST_CASE_P( | 
|  | LinearSolvers, | 
|  | EvaluatorTest, | 
|  | ::testing::Values(make_pair(DENSE_QR, 0), | 
|  | make_pair(DENSE_SCHUR, 0), | 
|  | make_pair(DENSE_SCHUR, 1), | 
|  | make_pair(DENSE_SCHUR, 2), | 
|  | make_pair(DENSE_SCHUR, 3), | 
|  | make_pair(DENSE_SCHUR, 4), | 
|  | make_pair(SPARSE_SCHUR, 0), | 
|  | make_pair(SPARSE_SCHUR, 1), | 
|  | make_pair(SPARSE_SCHUR, 2), | 
|  | make_pair(SPARSE_SCHUR, 3), | 
|  | make_pair(SPARSE_SCHUR, 4), | 
|  | make_pair(ITERATIVE_SCHUR, 0), | 
|  | make_pair(ITERATIVE_SCHUR, 1), | 
|  | make_pair(ITERATIVE_SCHUR, 2), | 
|  | make_pair(ITERATIVE_SCHUR, 3), | 
|  | make_pair(ITERATIVE_SCHUR, 4), | 
|  | make_pair(SPARSE_NORMAL_CHOLESKY, 0))); | 
|  |  | 
|  | // Simple cost function used to check if the evaluator is sensitive to | 
|  | // state changes. | 
|  | class ParameterSensitiveCostFunction : public SizedCostFunction<2, 2> { | 
|  | public: | 
|  | virtual bool Evaluate(double const* const* parameters, | 
|  | double* residuals, | 
|  | double** jacobians) const { | 
|  | double x1 = parameters[0][0]; | 
|  | double x2 = parameters[0][1]; | 
|  | residuals[0] = x1 * x1; | 
|  | residuals[1] = x2 * x2; | 
|  |  | 
|  | if (jacobians != NULL) { | 
|  | double* jacobian = jacobians[0]; | 
|  | if (jacobian != NULL) { | 
|  | jacobian[0] = 2.0 * x1; | 
|  | jacobian[1] = 0.0; | 
|  | jacobian[2] = 0.0; | 
|  | jacobian[3] = 2.0 * x2; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(Evaluator, EvaluatorRespectsParameterChanges) { | 
|  | ProblemImpl problem; | 
|  |  | 
|  | double x[2]; | 
|  | x[0] = 1.0; | 
|  | x[1] = 1.0; | 
|  |  | 
|  | problem.AddResidualBlock(new ParameterSensitiveCostFunction(), NULL, x); | 
|  | Program* program = problem.mutable_program(); | 
|  | program->SetParameterOffsetsAndIndex(); | 
|  |  | 
|  | Evaluator::Options options; | 
|  | options.linear_solver_type = DENSE_QR; | 
|  | options.num_eliminate_blocks = 0; | 
|  | string error; | 
|  | scoped_ptr<Evaluator> evaluator(Evaluator::Create(options, program, &error)); | 
|  | scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
|  |  | 
|  | ASSERT_EQ(2, jacobian->num_rows()); | 
|  | ASSERT_EQ(2, jacobian->num_cols()); | 
|  |  | 
|  | double state[2]; | 
|  | state[0] = 2.0; | 
|  | state[1] = 3.0; | 
|  |  | 
|  | // The original state of a residual block comes from the user's | 
|  | // state. So the original state is 1.0, 1.0, and the only way we get | 
|  | // the 2.0, 3.0 results in the following tests is if it respects the | 
|  | // values in the state vector. | 
|  |  | 
|  | // Cost only; no residuals and no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, NULL, NULL)); | 
|  | EXPECT_EQ(48.5, cost); | 
|  | } | 
|  |  | 
|  | // Cost and residuals, no jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[2] = { -2, -2 }; | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, NULL)); | 
|  | EXPECT_EQ(48.5, cost); | 
|  | EXPECT_EQ(4, residuals[0]); | 
|  | EXPECT_EQ(9, residuals[1]); | 
|  | } | 
|  |  | 
|  | // Cost, residuals, and jacobian. | 
|  | { | 
|  | double cost = -1; | 
|  | double residuals[2] = { -2, -2}; | 
|  | SetSparseMatrixConstant(jacobian.get(), -1); | 
|  | ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, jacobian.get())); | 
|  | EXPECT_EQ(48.5, cost); | 
|  | EXPECT_EQ(4, residuals[0]); | 
|  | EXPECT_EQ(9, residuals[1]); | 
|  | Matrix actual_jacobian; | 
|  | jacobian->ToDenseMatrix(&actual_jacobian); | 
|  |  | 
|  | Matrix expected_jacobian(2, 2); | 
|  | expected_jacobian | 
|  | << 2 * state[0], 0, | 
|  | 0, 2 * state[1]; | 
|  |  | 
|  | EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) | 
|  | << "Actual:\n" << actual_jacobian | 
|  | << "\nExpected:\n" << expected_jacobian; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |