| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/iterative_schur_complement_solver.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cstring> | 
 | #include <vector> | 
 |  | 
 | #include <glog/logging.h> | 
 | #include "Eigen/Dense" | 
 | #include "ceres/block_sparse_matrix.h" | 
 | #include "ceres/block_structure.h" | 
 | #include "ceres/conjugate_gradients_solver.h" | 
 | #include "ceres/implicit_schur_complement.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/scoped_ptr.h" | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "ceres/visibility_based_preconditioner.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | IterativeSchurComplementSolver::IterativeSchurComplementSolver( | 
 |     const LinearSolver::Options& options) | 
 |     : options_(options) { | 
 | } | 
 |  | 
 | IterativeSchurComplementSolver::~IterativeSchurComplementSolver() { | 
 | } | 
 |  | 
 | LinearSolver::Summary IterativeSchurComplementSolver::SolveImpl( | 
 |     BlockSparseMatrixBase* A, | 
 |     const double* b, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double* x) { | 
 |   CHECK_NOTNULL(A->block_structure()); | 
 |  | 
 |   // Initialize a ImplicitSchurComplement object. | 
 |   if (schur_complement_ == NULL) { | 
 |     schur_complement_.reset( | 
 |         new ImplicitSchurComplement(options_.num_eliminate_blocks, | 
 |                                     options_.preconditioner_type == JACOBI)); | 
 |   } | 
 |   schur_complement_->Init(*A, per_solve_options.D, b); | 
 |  | 
 |   // Initialize the solution to the Schur complement system to zero. | 
 |   // | 
 |   // TODO(sameeragarwal): There maybe a better initialization than an | 
 |   // all zeros solution. Explore other cheap starting points. | 
 |   reduced_linear_system_solution_.resize(schur_complement_->num_rows()); | 
 |   reduced_linear_system_solution_.setZero(); | 
 |  | 
 |   // Instantiate a conjugate gradient solver that runs on the Schur complement | 
 |   // matrix with the block diagonal of the matrix F'F as the preconditioner. | 
 |   LinearSolver::Options cg_options; | 
 |   cg_options.max_num_iterations = options_.max_num_iterations; | 
 |   ConjugateGradientsSolver cg_solver(cg_options); | 
 |   LinearSolver::PerSolveOptions cg_per_solve_options; | 
 |  | 
 |   cg_per_solve_options.r_tolerance = per_solve_options.r_tolerance; | 
 |   cg_per_solve_options.q_tolerance = per_solve_options.q_tolerance; | 
 |  | 
 |   bool is_preconditioner_good = false; | 
 |   switch (options_.preconditioner_type) { | 
 |     case IDENTITY: | 
 |       is_preconditioner_good = true; | 
 |       break; | 
 |     case JACOBI: | 
 |       // We need to strip the constness of the block_diagonal_FtF_inverse | 
 |       // matrix here because the only other way to initialize the struct | 
 |       // cg_solve_options would be to add a constructor to it. We know | 
 |       // that the only method ever called on the preconditioner is the | 
 |       // RightMultiply which is a const method so we don't need to worry | 
 |       // about the object getting modified. | 
 |       cg_per_solve_options.preconditioner = | 
 |           const_cast<BlockSparseMatrix*>( | 
 |               schur_complement_->block_diagonal_FtF_inverse()); | 
 |       is_preconditioner_good = true; | 
 |       break; | 
 |     case SCHUR_JACOBI: | 
 |     case CLUSTER_JACOBI: | 
 |     case CLUSTER_TRIDIAGONAL: | 
 |       if (visibility_based_preconditioner_.get() == NULL) { | 
 |         visibility_based_preconditioner_.reset( | 
 |             new VisibilityBasedPreconditioner(*A->block_structure(), options_)); | 
 |       } | 
 |       is_preconditioner_good = | 
 |           visibility_based_preconditioner_->Update(*A, per_solve_options.D); | 
 |       cg_per_solve_options.preconditioner = | 
 |           visibility_based_preconditioner_.get(); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unknown Preconditioner Type"; | 
 |   } | 
 |  | 
 |   LinearSolver::Summary cg_summary; | 
 |   cg_summary.num_iterations = 0; | 
 |   cg_summary.termination_type = FAILURE; | 
 |  | 
 |   if (is_preconditioner_good) { | 
 |     cg_summary = cg_solver.Solve(schur_complement_.get(), | 
 |                                  schur_complement_->rhs().data(), | 
 |                                  cg_per_solve_options, | 
 |                                  reduced_linear_system_solution_.data()); | 
 |     if (cg_summary.termination_type != FAILURE) { | 
 |       schur_complement_->BackSubstitute( | 
 |           reduced_linear_system_solution_.data(), x); | 
 |     } | 
 |   } | 
 |  | 
 |   VLOG(2) << "CG Iterations : " << cg_summary.num_iterations; | 
 |   return cg_summary; | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |