|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. | 
|  | // http://code.google.com/p/ceres-solver/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/partitioned_matrix_view.h" | 
|  |  | 
|  | #include <vector> | 
|  | #include <glog/logging.h> | 
|  | #include "gtest/gtest.h" | 
|  | #include "ceres/block_structure.h" | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  | #include "ceres/random.h" | 
|  | #include "ceres/sparse_matrix.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/internal/scoped_ptr.h" | 
|  |  | 
|  | namespace ceres { | 
|  | namespace internal { | 
|  |  | 
|  | const double kEpsilon = 1e-14; | 
|  |  | 
|  | class PartitionedMatrixViewTest : public ::testing::Test { | 
|  | protected : | 
|  | virtual void SetUp() { | 
|  | scoped_ptr<LinearLeastSquaresProblem> problem( | 
|  | CreateLinearLeastSquaresProblemFromId(2)); | 
|  | CHECK_NOTNULL(problem.get()); | 
|  | A_.reset(problem->A.release()); | 
|  |  | 
|  | num_cols_ = A_->num_cols(); | 
|  | num_rows_ = A_->num_rows(); | 
|  | num_eliminate_blocks_ = problem->num_eliminate_blocks; | 
|  | } | 
|  |  | 
|  | int num_rows_; | 
|  | int num_cols_; | 
|  | int num_eliminate_blocks_; | 
|  |  | 
|  | scoped_ptr<SparseMatrix> A_; | 
|  | }; | 
|  |  | 
|  | TEST_F(PartitionedMatrixViewTest, DimensionsTest) { | 
|  | PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()), | 
|  | num_eliminate_blocks_); | 
|  | EXPECT_EQ(m.num_col_blocks_e(), num_eliminate_blocks_); | 
|  | EXPECT_EQ(m.num_col_blocks_f(), num_cols_ - num_eliminate_blocks_); | 
|  | EXPECT_EQ(m.num_cols_e(), num_eliminate_blocks_); | 
|  | EXPECT_EQ(m.num_cols_f(), num_cols_ - num_eliminate_blocks_); | 
|  | EXPECT_EQ(m.num_cols(), A_->num_cols()); | 
|  | EXPECT_EQ(m.num_rows(), A_->num_rows()); | 
|  | } | 
|  |  | 
|  | TEST_F(PartitionedMatrixViewTest, RightMultiplyE) { | 
|  | PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()), | 
|  | num_eliminate_blocks_); | 
|  |  | 
|  | srand(5); | 
|  |  | 
|  | Vector x1(m.num_cols_e()); | 
|  | Vector x2(m.num_cols()); | 
|  | x2.setZero(); | 
|  |  | 
|  | for (int i = 0; i < m.num_cols_e(); ++i) { | 
|  | x1(i) = x2(i) = RandDouble(); | 
|  | } | 
|  |  | 
|  | Vector y1 = Vector::Zero(m.num_rows()); | 
|  | m.RightMultiplyE(x1.data(), y1.data()); | 
|  |  | 
|  | Vector y2 = Vector::Zero(m.num_rows()); | 
|  | A_->RightMultiply(x2.data(), y2.data()); | 
|  |  | 
|  | for (int i = 0; i < m.num_rows(); ++i) { | 
|  | EXPECT_NEAR(y1(i), y2(i), kEpsilon); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(PartitionedMatrixViewTest, RightMultiplyF) { | 
|  | PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()), | 
|  | num_eliminate_blocks_); | 
|  |  | 
|  | srand(5); | 
|  |  | 
|  | Vector x1(m.num_cols_f()); | 
|  | Vector x2 = Vector::Zero(m.num_cols()); | 
|  |  | 
|  | for (int i = 0; i < m.num_cols_f(); ++i) { | 
|  | x1(i) = RandDouble(); | 
|  | x2(i + m.num_cols_e()) = x1(i); | 
|  | } | 
|  |  | 
|  | Vector y1 = Vector::Zero(m.num_rows()); | 
|  | m.RightMultiplyF(x1.data(), y1.data()); | 
|  |  | 
|  | Vector y2 = Vector::Zero(m.num_rows()); | 
|  | A_->RightMultiply(x2.data(), y2.data()); | 
|  |  | 
|  | for (int i = 0; i < m.num_rows(); ++i) { | 
|  | EXPECT_NEAR(y1(i), y2(i), kEpsilon); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(PartitionedMatrixViewTest, LeftMultiply) { | 
|  | PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()), | 
|  | num_eliminate_blocks_); | 
|  |  | 
|  | srand(5); | 
|  |  | 
|  | Vector x = Vector::Zero(m.num_rows()); | 
|  | for (int i = 0; i < m.num_rows(); ++i) { | 
|  | x(i) = RandDouble(); | 
|  | } | 
|  |  | 
|  | Vector y = Vector::Zero(m.num_cols()); | 
|  | Vector y1 = Vector::Zero(m.num_cols_e()); | 
|  | Vector y2 = Vector::Zero(m.num_cols_f()); | 
|  |  | 
|  | A_->LeftMultiply(x.data(), y.data()); | 
|  | m.LeftMultiplyE(x.data(), y1.data()); | 
|  | m.LeftMultiplyF(x.data(), y2.data()); | 
|  |  | 
|  | for (int i = 0; i < m.num_cols(); ++i) { | 
|  | EXPECT_NEAR(y(i), | 
|  | (i < m.num_cols_e()) ? y1(i) : y2(i - m.num_cols_e()), | 
|  | kEpsilon); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(PartitionedMatrixViewTest, BlockDiagonalEtE) { | 
|  | PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()), | 
|  | num_eliminate_blocks_); | 
|  |  | 
|  | scoped_ptr<BlockSparseMatrix> | 
|  | block_diagonal_ee(m.CreateBlockDiagonalEtE()); | 
|  | const CompressedRowBlockStructure* bs  = block_diagonal_ee->block_structure(); | 
|  |  | 
|  | EXPECT_EQ(block_diagonal_ee->num_rows(), 2); | 
|  | EXPECT_EQ(block_diagonal_ee->num_cols(), 2); | 
|  | EXPECT_EQ(bs->cols.size(), 2); | 
|  | EXPECT_EQ(bs->rows.size(), 2); | 
|  |  | 
|  | EXPECT_NEAR(block_diagonal_ee->values()[0], 10.0, kEpsilon); | 
|  | EXPECT_NEAR(block_diagonal_ee->values()[1], 155.0, kEpsilon); | 
|  | } | 
|  |  | 
|  | TEST_F(PartitionedMatrixViewTest, BlockDiagonalFtF) { | 
|  | PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()), | 
|  | num_eliminate_blocks_); | 
|  |  | 
|  | scoped_ptr<BlockSparseMatrix> | 
|  | block_diagonal_ff(m.CreateBlockDiagonalFtF()); | 
|  | const CompressedRowBlockStructure* bs  = block_diagonal_ff->block_structure(); | 
|  |  | 
|  | EXPECT_EQ(block_diagonal_ff->num_rows(), 3); | 
|  | EXPECT_EQ(block_diagonal_ff->num_cols(), 3); | 
|  | EXPECT_EQ(bs->cols.size(), 3); | 
|  | EXPECT_EQ(bs->rows.size(), 3); | 
|  | EXPECT_NEAR(block_diagonal_ff->values()[0], 70.0, kEpsilon); | 
|  | EXPECT_NEAR(block_diagonal_ff->values()[1], 17.0, kEpsilon); | 
|  | EXPECT_NEAR(block_diagonal_ff->values()[2], 37.0, kEpsilon); | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace ceres |