| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This is the main header file a user should include. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_H_ |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_H_ |
| |
| // This file implements the following syntax: |
| // |
| // ON_CALL(mock_object.Method(...)) |
| // .With(...) ? |
| // .WillByDefault(...); |
| // |
| // where With() is optional and WillByDefault() must appear exactly |
| // once. |
| // |
| // EXPECT_CALL(mock_object.Method(...)) |
| // .With(...) ? |
| // .Times(...) ? |
| // .InSequence(...) * |
| // .WillOnce(...) * |
| // .WillRepeatedly(...) ? |
| // .RetiresOnSaturation() ? ; |
| // |
| // where all clauses are optional and WillOnce() can be repeated. |
| |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements some commonly used actions. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
| |
| #ifndef _WIN32_WCE |
| # include <errno.h> |
| #endif |
| |
| #include <algorithm> |
| #include <string> |
| |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file defines some utilities useful for implementing Google |
| // Mock. They are subject to change without notice, so please DO NOT |
| // USE THEM IN USER CODE. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ |
| #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ |
| |
| #include <stdio.h> |
| #include <ostream> // NOLINT |
| #include <string> |
| |
| // This file was GENERATED by command: |
| // pump.py gmock-generated-internal-utils.h.pump |
| // DO NOT EDIT BY HAND!!! |
| |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file contains template meta-programming utility classes needed |
| // for implementing Google Mock. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_ |
| #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_ |
| |
| // Copyright 2008, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: vadimb@google.com (Vadim Berman) |
| // |
| // Low-level types and utilities for porting Google Mock to various |
| // platforms. All macros ending with _ and symbols defined in an |
| // internal namespace are subject to change without notice. Code |
| // outside Google Mock MUST NOT USE THEM DIRECTLY. Macros that don't |
| // end with _ are part of Google Mock's public API and can be used by |
| // code outside Google Mock. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ |
| #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <iostream> |
| |
| // Most of the utilities needed for porting Google Mock are also |
| // required for Google Test and are defined in gtest-port.h. |
| // |
| // Note to maintainers: to reduce code duplication, prefer adding |
| // portability utilities to Google Test's gtest-port.h instead of |
| // here, as Google Mock depends on Google Test. Only add a utility |
| // here if it's truly specific to Google Mock. |
| #include "gtest/gtest.h" |
| |
| // To avoid conditional compilation everywhere, we make it |
| // gmock-port.h's responsibility to #include the header implementing |
| // tr1/tuple. gmock-port.h does this via gtest-port.h, which is |
| // guaranteed to pull in the tuple header. |
| |
| // For MS Visual C++, check the compiler version. At least VS 2003 is |
| // required to compile Google Mock. |
| #if defined(_MSC_VER) && _MSC_VER < 1310 |
| # error "At least Visual C++ 2003 (7.1) is required to compile Google Mock." |
| #endif |
| |
| // Macro for referencing flags. This is public as we want the user to |
| // use this syntax to reference Google Mock flags. |
| #define GMOCK_FLAG(name) FLAGS_gmock_##name |
| |
| // Macros for declaring flags. |
| #define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name) |
| #define GMOCK_DECLARE_int32_(name) \ |
| extern GTEST_API_ ::testing::internal::Int32 GMOCK_FLAG(name) |
| #define GMOCK_DECLARE_string_(name) \ |
| extern GTEST_API_ ::std::string GMOCK_FLAG(name) |
| |
| // Macros for defining flags. |
| #define GMOCK_DEFINE_bool_(name, default_val, doc) \ |
| GTEST_API_ bool GMOCK_FLAG(name) = (default_val) |
| #define GMOCK_DEFINE_int32_(name, default_val, doc) \ |
| GTEST_API_ ::testing::internal::Int32 GMOCK_FLAG(name) = (default_val) |
| #define GMOCK_DEFINE_string_(name, default_val, doc) \ |
| GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val) |
| |
| #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ |
| |
| namespace testing { |
| |
| template <typename T> |
| class Matcher; |
| |
| namespace internal { |
| |
| // An IgnoredValue object can be implicitly constructed from ANY value. |
| // This is used in implementing the IgnoreResult(a) action. |
| class IgnoredValue { |
| public: |
| // This constructor template allows any value to be implicitly |
| // converted to IgnoredValue. The object has no data member and |
| // doesn't try to remember anything about the argument. We |
| // deliberately omit the 'explicit' keyword in order to allow the |
| // conversion to be implicit. |
| template <typename T> |
| IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit) |
| }; |
| |
| // MatcherTuple<T>::type is a tuple type where each field is a Matcher |
| // for the corresponding field in tuple type T. |
| template <typename Tuple> |
| struct MatcherTuple; |
| |
| template <> |
| struct MatcherTuple< ::std::tr1::tuple<> > { |
| typedef ::std::tr1::tuple< > type; |
| }; |
| |
| template <typename A1> |
| struct MatcherTuple< ::std::tr1::tuple<A1> > { |
| typedef ::std::tr1::tuple<Matcher<A1> > type; |
| }; |
| |
| template <typename A1, typename A2> |
| struct MatcherTuple< ::std::tr1::tuple<A1, A2> > { |
| typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2> > type; |
| }; |
| |
| template <typename A1, typename A2, typename A3> |
| struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3> > { |
| typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3> > type; |
| }; |
| |
| template <typename A1, typename A2, typename A3, typename A4> |
| struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4> > { |
| typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, |
| Matcher<A4> > type; |
| }; |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5> |
| struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5> > { |
| typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>, |
| Matcher<A5> > type; |
| }; |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6> |
| struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6> > { |
| typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>, |
| Matcher<A5>, Matcher<A6> > type; |
| }; |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7> |
| struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7> > { |
| typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>, |
| Matcher<A5>, Matcher<A6>, Matcher<A7> > type; |
| }; |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7, typename A8> |
| struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8> > { |
| typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>, |
| Matcher<A5>, Matcher<A6>, Matcher<A7>, Matcher<A8> > type; |
| }; |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7, typename A8, typename A9> |
| struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9> > { |
| typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>, |
| Matcher<A5>, Matcher<A6>, Matcher<A7>, Matcher<A8>, Matcher<A9> > type; |
| }; |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7, typename A8, typename A9, typename A10> |
| struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9, |
| A10> > { |
| typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>, |
| Matcher<A5>, Matcher<A6>, Matcher<A7>, Matcher<A8>, Matcher<A9>, |
| Matcher<A10> > type; |
| }; |
| |
| // Template struct Function<F>, where F must be a function type, contains |
| // the following typedefs: |
| // |
| // Result: the function's return type. |
| // ArgumentN: the type of the N-th argument, where N starts with 1. |
| // ArgumentTuple: the tuple type consisting of all parameters of F. |
| // ArgumentMatcherTuple: the tuple type consisting of Matchers for all |
| // parameters of F. |
| // MakeResultVoid: the function type obtained by substituting void |
| // for the return type of F. |
| // MakeResultIgnoredValue: |
| // the function type obtained by substituting Something |
| // for the return type of F. |
| template <typename F> |
| struct Function; |
| |
| template <typename R> |
| struct Function<R()> { |
| typedef R Result; |
| typedef ::std::tr1::tuple<> ArgumentTuple; |
| typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; |
| typedef void MakeResultVoid(); |
| typedef IgnoredValue MakeResultIgnoredValue(); |
| }; |
| |
| template <typename R, typename A1> |
| struct Function<R(A1)> |
| : Function<R()> { |
| typedef A1 Argument1; |
| typedef ::std::tr1::tuple<A1> ArgumentTuple; |
| typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; |
| typedef void MakeResultVoid(A1); |
| typedef IgnoredValue MakeResultIgnoredValue(A1); |
| }; |
| |
| template <typename R, typename A1, typename A2> |
| struct Function<R(A1, A2)> |
| : Function<R(A1)> { |
| typedef A2 Argument2; |
| typedef ::std::tr1::tuple<A1, A2> ArgumentTuple; |
| typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; |
| typedef void MakeResultVoid(A1, A2); |
| typedef IgnoredValue MakeResultIgnoredValue(A1, A2); |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3> |
| struct Function<R(A1, A2, A3)> |
| : Function<R(A1, A2)> { |
| typedef A3 Argument3; |
| typedef ::std::tr1::tuple<A1, A2, A3> ArgumentTuple; |
| typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; |
| typedef void MakeResultVoid(A1, A2, A3); |
| typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3); |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4> |
| struct Function<R(A1, A2, A3, A4)> |
| : Function<R(A1, A2, A3)> { |
| typedef A4 Argument4; |
| typedef ::std::tr1::tuple<A1, A2, A3, A4> ArgumentTuple; |
| typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; |
| typedef void MakeResultVoid(A1, A2, A3, A4); |
| typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4); |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5> |
| struct Function<R(A1, A2, A3, A4, A5)> |
| : Function<R(A1, A2, A3, A4)> { |
| typedef A5 Argument5; |
| typedef ::std::tr1::tuple<A1, A2, A3, A4, A5> ArgumentTuple; |
| typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; |
| typedef void MakeResultVoid(A1, A2, A3, A4, A5); |
| typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5); |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6> |
| struct Function<R(A1, A2, A3, A4, A5, A6)> |
| : Function<R(A1, A2, A3, A4, A5)> { |
| typedef A6 Argument6; |
| typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6> ArgumentTuple; |
| typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; |
| typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6); |
| typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6); |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7> |
| struct Function<R(A1, A2, A3, A4, A5, A6, A7)> |
| : Function<R(A1, A2, A3, A4, A5, A6)> { |
| typedef A7 Argument7; |
| typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7> ArgumentTuple; |
| typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; |
| typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7); |
| typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7); |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7, typename A8> |
| struct Function<R(A1, A2, A3, A4, A5, A6, A7, A8)> |
| : Function<R(A1, A2, A3, A4, A5, A6, A7)> { |
| typedef A8 Argument8; |
| typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8> ArgumentTuple; |
| typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; |
| typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8); |
| typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8); |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7, typename A8, typename A9> |
| struct Function<R(A1, A2, A3, A4, A5, A6, A7, A8, A9)> |
| : Function<R(A1, A2, A3, A4, A5, A6, A7, A8)> { |
| typedef A9 Argument9; |
| typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9> ArgumentTuple; |
| typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; |
| typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8, A9); |
| typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8, |
| A9); |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7, typename A8, typename A9, |
| typename A10> |
| struct Function<R(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)> |
| : Function<R(A1, A2, A3, A4, A5, A6, A7, A8, A9)> { |
| typedef A10 Argument10; |
| typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9, |
| A10> ArgumentTuple; |
| typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple; |
| typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10); |
| typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8, |
| A9, A10); |
| }; |
| |
| } // namespace internal |
| |
| } // namespace testing |
| |
| #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_ |
| |
| namespace testing { |
| namespace internal { |
| |
| // Converts an identifier name to a space-separated list of lower-case |
| // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is |
| // treated as one word. For example, both "FooBar123" and |
| // "foo_bar_123" are converted to "foo bar 123". |
| GTEST_API_ string ConvertIdentifierNameToWords(const char* id_name); |
| |
| // PointeeOf<Pointer>::type is the type of a value pointed to by a |
| // Pointer, which can be either a smart pointer or a raw pointer. The |
| // following default implementation is for the case where Pointer is a |
| // smart pointer. |
| template <typename Pointer> |
| struct PointeeOf { |
| // Smart pointer classes define type element_type as the type of |
| // their pointees. |
| typedef typename Pointer::element_type type; |
| }; |
| // This specialization is for the raw pointer case. |
| template <typename T> |
| struct PointeeOf<T*> { typedef T type; }; // NOLINT |
| |
| // GetRawPointer(p) returns the raw pointer underlying p when p is a |
| // smart pointer, or returns p itself when p is already a raw pointer. |
| // The following default implementation is for the smart pointer case. |
| template <typename Pointer> |
| inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) { |
| return p.get(); |
| } |
| // This overloaded version is for the raw pointer case. |
| template <typename Element> |
| inline Element* GetRawPointer(Element* p) { return p; } |
| |
| // This comparator allows linked_ptr to be stored in sets. |
| template <typename T> |
| struct LinkedPtrLessThan { |
| bool operator()(const ::testing::internal::linked_ptr<T>& lhs, |
| const ::testing::internal::linked_ptr<T>& rhs) const { |
| return lhs.get() < rhs.get(); |
| } |
| }; |
| |
| // Symbian compilation can be done with wchar_t being either a native |
| // type or a typedef. Using Google Mock with OpenC without wchar_t |
| // should require the definition of _STLP_NO_WCHAR_T. |
| // |
| // MSVC treats wchar_t as a native type usually, but treats it as the |
| // same as unsigned short when the compiler option /Zc:wchar_t- is |
| // specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t |
| // is a native type. |
| #if (GTEST_OS_SYMBIAN && defined(_STLP_NO_WCHAR_T)) || \ |
| (defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)) |
| // wchar_t is a typedef. |
| #else |
| # define GMOCK_WCHAR_T_IS_NATIVE_ 1 |
| #endif |
| |
| // signed wchar_t and unsigned wchar_t are NOT in the C++ standard. |
| // Using them is a bad practice and not portable. So DON'T use them. |
| // |
| // Still, Google Mock is designed to work even if the user uses signed |
| // wchar_t or unsigned wchar_t (obviously, assuming the compiler |
| // supports them). |
| // |
| // To gcc, |
| // wchar_t == signed wchar_t != unsigned wchar_t == unsigned int |
| #ifdef __GNUC__ |
| // signed/unsigned wchar_t are valid types. |
| # define GMOCK_HAS_SIGNED_WCHAR_T_ 1 |
| #endif |
| |
| // In what follows, we use the term "kind" to indicate whether a type |
| // is bool, an integer type (excluding bool), a floating-point type, |
| // or none of them. This categorization is useful for determining |
| // when a matcher argument type can be safely converted to another |
| // type in the implementation of SafeMatcherCast. |
| enum TypeKind { |
| kBool, kInteger, kFloatingPoint, kOther |
| }; |
| |
| // KindOf<T>::value is the kind of type T. |
| template <typename T> struct KindOf { |
| enum { value = kOther }; // The default kind. |
| }; |
| |
| // This macro declares that the kind of 'type' is 'kind'. |
| #define GMOCK_DECLARE_KIND_(type, kind) \ |
| template <> struct KindOf<type> { enum { value = kind }; } |
| |
| GMOCK_DECLARE_KIND_(bool, kBool); |
| |
| // All standard integer types. |
| GMOCK_DECLARE_KIND_(char, kInteger); |
| GMOCK_DECLARE_KIND_(signed char, kInteger); |
| GMOCK_DECLARE_KIND_(unsigned char, kInteger); |
| GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT |
| GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT |
| GMOCK_DECLARE_KIND_(int, kInteger); |
| GMOCK_DECLARE_KIND_(unsigned int, kInteger); |
| GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT |
| GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT |
| |
| #if GMOCK_WCHAR_T_IS_NATIVE_ |
| GMOCK_DECLARE_KIND_(wchar_t, kInteger); |
| #endif |
| |
| // Non-standard integer types. |
| GMOCK_DECLARE_KIND_(Int64, kInteger); |
| GMOCK_DECLARE_KIND_(UInt64, kInteger); |
| |
| // All standard floating-point types. |
| GMOCK_DECLARE_KIND_(float, kFloatingPoint); |
| GMOCK_DECLARE_KIND_(double, kFloatingPoint); |
| GMOCK_DECLARE_KIND_(long double, kFloatingPoint); |
| |
| #undef GMOCK_DECLARE_KIND_ |
| |
| // Evaluates to the kind of 'type'. |
| #define GMOCK_KIND_OF_(type) \ |
| static_cast< ::testing::internal::TypeKind>( \ |
| ::testing::internal::KindOf<type>::value) |
| |
| // Evaluates to true iff integer type T is signed. |
| #define GMOCK_IS_SIGNED_(T) (static_cast<T>(-1) < 0) |
| |
| // LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value |
| // is true iff arithmetic type From can be losslessly converted to |
| // arithmetic type To. |
| // |
| // It's the user's responsibility to ensure that both From and To are |
| // raw (i.e. has no CV modifier, is not a pointer, and is not a |
| // reference) built-in arithmetic types, kFromKind is the kind of |
| // From, and kToKind is the kind of To; the value is |
| // implementation-defined when the above pre-condition is violated. |
| template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To> |
| struct LosslessArithmeticConvertibleImpl : public false_type {}; |
| |
| // Converting bool to bool is lossless. |
| template <> |
| struct LosslessArithmeticConvertibleImpl<kBool, bool, kBool, bool> |
| : public true_type {}; // NOLINT |
| |
| // Converting bool to any integer type is lossless. |
| template <typename To> |
| struct LosslessArithmeticConvertibleImpl<kBool, bool, kInteger, To> |
| : public true_type {}; // NOLINT |
| |
| // Converting bool to any floating-point type is lossless. |
| template <typename To> |
| struct LosslessArithmeticConvertibleImpl<kBool, bool, kFloatingPoint, To> |
| : public true_type {}; // NOLINT |
| |
| // Converting an integer to bool is lossy. |
| template <typename From> |
| struct LosslessArithmeticConvertibleImpl<kInteger, From, kBool, bool> |
| : public false_type {}; // NOLINT |
| |
| // Converting an integer to another non-bool integer is lossless iff |
| // the target type's range encloses the source type's range. |
| template <typename From, typename To> |
| struct LosslessArithmeticConvertibleImpl<kInteger, From, kInteger, To> |
| : public bool_constant< |
| // When converting from a smaller size to a larger size, we are |
| // fine as long as we are not converting from signed to unsigned. |
| ((sizeof(From) < sizeof(To)) && |
| (!GMOCK_IS_SIGNED_(From) || GMOCK_IS_SIGNED_(To))) || |
| // When converting between the same size, the signedness must match. |
| ((sizeof(From) == sizeof(To)) && |
| (GMOCK_IS_SIGNED_(From) == GMOCK_IS_SIGNED_(To)))> {}; // NOLINT |
| |
| #undef GMOCK_IS_SIGNED_ |
| |
| // Converting an integer to a floating-point type may be lossy, since |
| // the format of a floating-point number is implementation-defined. |
| template <typename From, typename To> |
| struct LosslessArithmeticConvertibleImpl<kInteger, From, kFloatingPoint, To> |
| : public false_type {}; // NOLINT |
| |
| // Converting a floating-point to bool is lossy. |
| template <typename From> |
| struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kBool, bool> |
| : public false_type {}; // NOLINT |
| |
| // Converting a floating-point to an integer is lossy. |
| template <typename From, typename To> |
| struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kInteger, To> |
| : public false_type {}; // NOLINT |
| |
| // Converting a floating-point to another floating-point is lossless |
| // iff the target type is at least as big as the source type. |
| template <typename From, typename To> |
| struct LosslessArithmeticConvertibleImpl< |
| kFloatingPoint, From, kFloatingPoint, To> |
| : public bool_constant<sizeof(From) <= sizeof(To)> {}; // NOLINT |
| |
| // LosslessArithmeticConvertible<From, To>::value is true iff arithmetic |
| // type From can be losslessly converted to arithmetic type To. |
| // |
| // It's the user's responsibility to ensure that both From and To are |
| // raw (i.e. has no CV modifier, is not a pointer, and is not a |
| // reference) built-in arithmetic types; the value is |
| // implementation-defined when the above pre-condition is violated. |
| template <typename From, typename To> |
| struct LosslessArithmeticConvertible |
| : public LosslessArithmeticConvertibleImpl< |
| GMOCK_KIND_OF_(From), From, GMOCK_KIND_OF_(To), To> {}; // NOLINT |
| |
| // This interface knows how to report a Google Mock failure (either |
| // non-fatal or fatal). |
| class FailureReporterInterface { |
| public: |
| // The type of a failure (either non-fatal or fatal). |
| enum FailureType { |
| kNonfatal, kFatal |
| }; |
| |
| virtual ~FailureReporterInterface() {} |
| |
| // Reports a failure that occurred at the given source file location. |
| virtual void ReportFailure(FailureType type, const char* file, int line, |
| const string& message) = 0; |
| }; |
| |
| // Returns the failure reporter used by Google Mock. |
| GTEST_API_ FailureReporterInterface* GetFailureReporter(); |
| |
| // Asserts that condition is true; aborts the process with the given |
| // message if condition is false. We cannot use LOG(FATAL) or CHECK() |
| // as Google Mock might be used to mock the log sink itself. We |
| // inline this function to prevent it from showing up in the stack |
| // trace. |
| inline void Assert(bool condition, const char* file, int line, |
| const string& msg) { |
| if (!condition) { |
| GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal, |
| file, line, msg); |
| } |
| } |
| inline void Assert(bool condition, const char* file, int line) { |
| Assert(condition, file, line, "Assertion failed."); |
| } |
| |
| // Verifies that condition is true; generates a non-fatal failure if |
| // condition is false. |
| inline void Expect(bool condition, const char* file, int line, |
| const string& msg) { |
| if (!condition) { |
| GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal, |
| file, line, msg); |
| } |
| } |
| inline void Expect(bool condition, const char* file, int line) { |
| Expect(condition, file, line, "Expectation failed."); |
| } |
| |
| // Severity level of a log. |
| enum LogSeverity { |
| kInfo = 0, |
| kWarning = 1 |
| }; |
| |
| // Valid values for the --gmock_verbose flag. |
| |
| // All logs (informational and warnings) are printed. |
| const char kInfoVerbosity[] = "info"; |
| // Only warnings are printed. |
| const char kWarningVerbosity[] = "warning"; |
| // No logs are printed. |
| const char kErrorVerbosity[] = "error"; |
| |
| // Returns true iff a log with the given severity is visible according |
| // to the --gmock_verbose flag. |
| GTEST_API_ bool LogIsVisible(LogSeverity severity); |
| |
| // Prints the given message to stdout iff 'severity' >= the level |
| // specified by the --gmock_verbose flag. If stack_frames_to_skip >= |
| // 0, also prints the stack trace excluding the top |
| // stack_frames_to_skip frames. In opt mode, any positive |
| // stack_frames_to_skip is treated as 0, since we don't know which |
| // function calls will be inlined by the compiler and need to be |
| // conservative. |
| GTEST_API_ void Log(LogSeverity severity, |
| const string& message, |
| int stack_frames_to_skip); |
| |
| // TODO(wan@google.com): group all type utilities together. |
| |
| // Type traits. |
| |
| // is_reference<T>::value is non-zero iff T is a reference type. |
| template <typename T> struct is_reference : public false_type {}; |
| template <typename T> struct is_reference<T&> : public true_type {}; |
| |
| // type_equals<T1, T2>::value is non-zero iff T1 and T2 are the same type. |
| template <typename T1, typename T2> struct type_equals : public false_type {}; |
| template <typename T> struct type_equals<T, T> : public true_type {}; |
| |
| // remove_reference<T>::type removes the reference from type T, if any. |
| template <typename T> struct remove_reference { typedef T type; }; // NOLINT |
| template <typename T> struct remove_reference<T&> { typedef T type; }; // NOLINT |
| |
| // DecayArray<T>::type turns an array type U[N] to const U* and preserves |
| // other types. Useful for saving a copy of a function argument. |
| template <typename T> struct DecayArray { typedef T type; }; // NOLINT |
| template <typename T, size_t N> struct DecayArray<T[N]> { |
| typedef const T* type; |
| }; |
| // Sometimes people use arrays whose size is not available at the use site |
| // (e.g. extern const char kNamePrefix[]). This specialization covers that |
| // case. |
| template <typename T> struct DecayArray<T[]> { |
| typedef const T* type; |
| }; |
| |
| // Disable MSVC warnings for infinite recursion, since in this case the |
| // the recursion is unreachable. |
| #ifdef _MSC_VER |
| # pragma warning(push) |
| # pragma warning(disable:4717) |
| #endif |
| |
| // Invalid<T>() is usable as an expression of type T, but will terminate |
| // the program with an assertion failure if actually run. This is useful |
| // when a value of type T is needed for compilation, but the statement |
| // will not really be executed (or we don't care if the statement |
| // crashes). |
| template <typename T> |
| inline T Invalid() { |
| Assert(false, "", -1, "Internal error: attempt to return invalid value"); |
| // This statement is unreachable, and would never terminate even if it |
| // could be reached. It is provided only to placate compiler warnings |
| // about missing return statements. |
| return Invalid<T>(); |
| } |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) |
| #endif |
| |
| // Given a raw type (i.e. having no top-level reference or const |
| // modifier) RawContainer that's either an STL-style container or a |
| // native array, class StlContainerView<RawContainer> has the |
| // following members: |
| // |
| // - type is a type that provides an STL-style container view to |
| // (i.e. implements the STL container concept for) RawContainer; |
| // - const_reference is a type that provides a reference to a const |
| // RawContainer; |
| // - ConstReference(raw_container) returns a const reference to an STL-style |
| // container view to raw_container, which is a RawContainer. |
| // - Copy(raw_container) returns an STL-style container view of a |
| // copy of raw_container, which is a RawContainer. |
| // |
| // This generic version is used when RawContainer itself is already an |
| // STL-style container. |
| template <class RawContainer> |
| class StlContainerView { |
| public: |
| typedef RawContainer type; |
| typedef const type& const_reference; |
| |
| static const_reference ConstReference(const RawContainer& container) { |
| // Ensures that RawContainer is not a const type. |
| testing::StaticAssertTypeEq<RawContainer, |
| GTEST_REMOVE_CONST_(RawContainer)>(); |
| return container; |
| } |
| static type Copy(const RawContainer& container) { return container; } |
| }; |
| |
| // This specialization is used when RawContainer is a native array type. |
| template <typename Element, size_t N> |
| class StlContainerView<Element[N]> { |
| public: |
| typedef GTEST_REMOVE_CONST_(Element) RawElement; |
| typedef internal::NativeArray<RawElement> type; |
| // NativeArray<T> can represent a native array either by value or by |
| // reference (selected by a constructor argument), so 'const type' |
| // can be used to reference a const native array. We cannot |
| // 'typedef const type& const_reference' here, as that would mean |
| // ConstReference() has to return a reference to a local variable. |
| typedef const type const_reference; |
| |
| static const_reference ConstReference(const Element (&array)[N]) { |
| // Ensures that Element is not a const type. |
| testing::StaticAssertTypeEq<Element, RawElement>(); |
| #if GTEST_OS_SYMBIAN |
| // The Nokia Symbian compiler confuses itself in template instantiation |
| // for this call without the cast to Element*: |
| // function call '[testing::internal::NativeArray<char *>].NativeArray( |
| // {lval} const char *[4], long, testing::internal::RelationToSource)' |
| // does not match |
| // 'testing::internal::NativeArray<char *>::NativeArray( |
| // char *const *, unsigned int, testing::internal::RelationToSource)' |
| // (instantiating: 'testing::internal::ContainsMatcherImpl |
| // <const char * (&)[4]>::Matches(const char * (&)[4]) const') |
| // (instantiating: 'testing::internal::StlContainerView<char *[4]>:: |
| // ConstReference(const char * (&)[4])') |
| // (and though the N parameter type is mismatched in the above explicit |
| // conversion of it doesn't help - only the conversion of the array). |
| return type(const_cast<Element*>(&array[0]), N, kReference); |
| #else |
| return type(array, N, kReference); |
| #endif // GTEST_OS_SYMBIAN |
| } |
| static type Copy(const Element (&array)[N]) { |
| #if GTEST_OS_SYMBIAN |
| return type(const_cast<Element*>(&array[0]), N, kCopy); |
| #else |
| return type(array, N, kCopy); |
| #endif // GTEST_OS_SYMBIAN |
| } |
| }; |
| |
| // This specialization is used when RawContainer is a native array |
| // represented as a (pointer, size) tuple. |
| template <typename ElementPointer, typename Size> |
| class StlContainerView< ::std::tr1::tuple<ElementPointer, Size> > { |
| public: |
| typedef GTEST_REMOVE_CONST_( |
| typename internal::PointeeOf<ElementPointer>::type) RawElement; |
| typedef internal::NativeArray<RawElement> type; |
| typedef const type const_reference; |
| |
| static const_reference ConstReference( |
| const ::std::tr1::tuple<ElementPointer, Size>& array) { |
| using ::std::tr1::get; |
| return type(get<0>(array), get<1>(array), kReference); |
| } |
| static type Copy(const ::std::tr1::tuple<ElementPointer, Size>& array) { |
| using ::std::tr1::get; |
| return type(get<0>(array), get<1>(array), kCopy); |
| } |
| }; |
| |
| // The following specialization prevents the user from instantiating |
| // StlContainer with a reference type. |
| template <typename T> class StlContainerView<T&>; |
| |
| // A type transform to remove constness from the first part of a pair. |
| // Pairs like that are used as the value_type of associative containers, |
| // and this transform produces a similar but assignable pair. |
| template <typename T> |
| struct RemoveConstFromKey { |
| typedef T type; |
| }; |
| |
| // Partially specialized to remove constness from std::pair<const K, V>. |
| template <typename K, typename V> |
| struct RemoveConstFromKey<std::pair<const K, V> > { |
| typedef std::pair<K, V> type; |
| }; |
| |
| // Mapping from booleans to types. Similar to boost::bool_<kValue> and |
| // std::integral_constant<bool, kValue>. |
| template <bool kValue> |
| struct BooleanConstant {}; |
| |
| } // namespace internal |
| } // namespace testing |
| |
| #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ |
| |
| namespace testing { |
| |
| // To implement an action Foo, define: |
| // 1. a class FooAction that implements the ActionInterface interface, and |
| // 2. a factory function that creates an Action object from a |
| // const FooAction*. |
| // |
| // The two-level delegation design follows that of Matcher, providing |
| // consistency for extension developers. It also eases ownership |
| // management as Action objects can now be copied like plain values. |
| |
| namespace internal { |
| |
| template <typename F1, typename F2> |
| class ActionAdaptor; |
| |
| // BuiltInDefaultValue<T>::Get() returns the "built-in" default |
| // value for type T, which is NULL when T is a pointer type, 0 when T |
| // is a numeric type, false when T is bool, or "" when T is string or |
| // std::string. For any other type T, this value is undefined and the |
| // function will abort the process. |
| template <typename T> |
| class BuiltInDefaultValue { |
| public: |
| // This function returns true iff type T has a built-in default value. |
| static bool Exists() { return false; } |
| static T Get() { |
| Assert(false, __FILE__, __LINE__, |
| "Default action undefined for the function return type."); |
| return internal::Invalid<T>(); |
| // The above statement will never be reached, but is required in |
| // order for this function to compile. |
| } |
| }; |
| |
| // This partial specialization says that we use the same built-in |
| // default value for T and const T. |
| template <typename T> |
| class BuiltInDefaultValue<const T> { |
| public: |
| static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } |
| static T Get() { return BuiltInDefaultValue<T>::Get(); } |
| }; |
| |
| // This partial specialization defines the default values for pointer |
| // types. |
| template <typename T> |
| class BuiltInDefaultValue<T*> { |
| public: |
| static bool Exists() { return true; } |
| static T* Get() { return NULL; } |
| }; |
| |
| // The following specializations define the default values for |
| // specific types we care about. |
| #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ |
| template <> \ |
| class BuiltInDefaultValue<type> { \ |
| public: \ |
| static bool Exists() { return true; } \ |
| static type Get() { return value; } \ |
| } |
| |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT |
| #if GTEST_HAS_GLOBAL_STRING |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, ""); |
| #endif // GTEST_HAS_GLOBAL_STRING |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); |
| |
| // There's no need for a default action for signed wchar_t, as that |
| // type is the same as wchar_t for gcc, and invalid for MSVC. |
| // |
| // There's also no need for a default action for unsigned wchar_t, as |
| // that type is the same as unsigned int for gcc, and invalid for |
| // MSVC. |
| #if GMOCK_WCHAR_T_IS_NATIVE_ |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT |
| #endif |
| |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); |
| GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); |
| |
| #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ |
| |
| } // namespace internal |
| |
| // When an unexpected function call is encountered, Google Mock will |
| // let it return a default value if the user has specified one for its |
| // return type, or if the return type has a built-in default value; |
| // otherwise Google Mock won't know what value to return and will have |
| // to abort the process. |
| // |
| // The DefaultValue<T> class allows a user to specify the |
| // default value for a type T that is both copyable and publicly |
| // destructible (i.e. anything that can be used as a function return |
| // type). The usage is: |
| // |
| // // Sets the default value for type T to be foo. |
| // DefaultValue<T>::Set(foo); |
| template <typename T> |
| class DefaultValue { |
| public: |
| // Sets the default value for type T; requires T to be |
| // copy-constructable and have a public destructor. |
| static void Set(T x) { |
| delete producer_; |
| producer_ = new FixedValueProducer(x); |
| } |
| |
| // Provides a factory function to be called to generate the default value. |
| // This method can be used even if T is only move-constructible, but it is not |
| // limited to that case. |
| typedef T (*FactoryFunction)(); |
| static void SetFactory(FactoryFunction factory) { |
| delete producer_; |
| producer_ = new FactoryValueProducer(factory); |
| } |
| |
| // Unsets the default value for type T. |
| static void Clear() { |
| delete producer_; |
| producer_ = NULL; |
| } |
| |
| // Returns true iff the user has set the default value for type T. |
| static bool IsSet() { return producer_ != NULL; } |
| |
| // Returns true if T has a default return value set by the user or there |
| // exists a built-in default value. |
| static bool Exists() { |
| return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); |
| } |
| |
| // Returns the default value for type T if the user has set one; |
| // otherwise returns the built-in default value. Requires that Exists() |
| // is true, which ensures that the return value is well-defined. |
| static T Get() { |
| return producer_ == NULL ? |
| internal::BuiltInDefaultValue<T>::Get() : producer_->Produce(); |
| } |
| |
| private: |
| class ValueProducer { |
| public: |
| virtual ~ValueProducer() {} |
| virtual T Produce() = 0; |
| }; |
| |
| class FixedValueProducer : public ValueProducer { |
| public: |
| explicit FixedValueProducer(T value) : value_(value) {} |
| virtual T Produce() { return value_; } |
| |
| private: |
| const T value_; |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); |
| }; |
| |
| class FactoryValueProducer : public ValueProducer { |
| public: |
| explicit FactoryValueProducer(FactoryFunction factory) |
| : factory_(factory) {} |
| virtual T Produce() { return factory_(); } |
| |
| private: |
| const FactoryFunction factory_; |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); |
| }; |
| |
| static ValueProducer* producer_; |
| }; |
| |
| // This partial specialization allows a user to set default values for |
| // reference types. |
| template <typename T> |
| class DefaultValue<T&> { |
| public: |
| // Sets the default value for type T&. |
| static void Set(T& x) { // NOLINT |
| address_ = &x; |
| } |
| |
| // Unsets the default value for type T&. |
| static void Clear() { |
| address_ = NULL; |
| } |
| |
| // Returns true iff the user has set the default value for type T&. |
| static bool IsSet() { return address_ != NULL; } |
| |
| // Returns true if T has a default return value set by the user or there |
| // exists a built-in default value. |
| static bool Exists() { |
| return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); |
| } |
| |
| // Returns the default value for type T& if the user has set one; |
| // otherwise returns the built-in default value if there is one; |
| // otherwise aborts the process. |
| static T& Get() { |
| return address_ == NULL ? |
| internal::BuiltInDefaultValue<T&>::Get() : *address_; |
| } |
| |
| private: |
| static T* address_; |
| }; |
| |
| // This specialization allows DefaultValue<void>::Get() to |
| // compile. |
| template <> |
| class DefaultValue<void> { |
| public: |
| static bool Exists() { return true; } |
| static void Get() {} |
| }; |
| |
| // Points to the user-set default value for type T. |
| template <typename T> |
| typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL; |
| |
| // Points to the user-set default value for type T&. |
| template <typename T> |
| T* DefaultValue<T&>::address_ = NULL; |
| |
| // Implement this interface to define an action for function type F. |
| template <typename F> |
| class ActionInterface { |
| public: |
| typedef typename internal::Function<F>::Result Result; |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| ActionInterface() {} |
| virtual ~ActionInterface() {} |
| |
| // Performs the action. This method is not const, as in general an |
| // action can have side effects and be stateful. For example, a |
| // get-the-next-element-from-the-collection action will need to |
| // remember the current element. |
| virtual Result Perform(const ArgumentTuple& args) = 0; |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); |
| }; |
| |
| // An Action<F> is a copyable and IMMUTABLE (except by assignment) |
| // object that represents an action to be taken when a mock function |
| // of type F is called. The implementation of Action<T> is just a |
| // linked_ptr to const ActionInterface<T>, so copying is fairly cheap. |
| // Don't inherit from Action! |
| // |
| // You can view an object implementing ActionInterface<F> as a |
| // concrete action (including its current state), and an Action<F> |
| // object as a handle to it. |
| template <typename F> |
| class Action { |
| public: |
| typedef typename internal::Function<F>::Result Result; |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| // Constructs a null Action. Needed for storing Action objects in |
| // STL containers. |
| Action() : impl_(NULL) {} |
| |
| // Constructs an Action from its implementation. A NULL impl is |
| // used to represent the "do-default" action. |
| explicit Action(ActionInterface<F>* impl) : impl_(impl) {} |
| |
| // Copy constructor. |
| Action(const Action& action) : impl_(action.impl_) {} |
| |
| // This constructor allows us to turn an Action<Func> object into an |
| // Action<F>, as long as F's arguments can be implicitly converted |
| // to Func's and Func's return type can be implicitly converted to |
| // F's. |
| template <typename Func> |
| explicit Action(const Action<Func>& action); |
| |
| // Returns true iff this is the DoDefault() action. |
| bool IsDoDefault() const { return impl_.get() == NULL; } |
| |
| // Performs the action. Note that this method is const even though |
| // the corresponding method in ActionInterface is not. The reason |
| // is that a const Action<F> means that it cannot be re-bound to |
| // another concrete action, not that the concrete action it binds to |
| // cannot change state. (Think of the difference between a const |
| // pointer and a pointer to const.) |
| Result Perform(const ArgumentTuple& args) const { |
| internal::Assert( |
| !IsDoDefault(), __FILE__, __LINE__, |
| "You are using DoDefault() inside a composite action like " |
| "DoAll() or WithArgs(). This is not supported for technical " |
| "reasons. Please instead spell out the default action, or " |
| "assign the default action to an Action variable and use " |
| "the variable in various places."); |
| return impl_->Perform(args); |
| } |
| |
| private: |
| template <typename F1, typename F2> |
| friend class internal::ActionAdaptor; |
| |
| internal::linked_ptr<ActionInterface<F> > impl_; |
| }; |
| |
| // The PolymorphicAction class template makes it easy to implement a |
| // polymorphic action (i.e. an action that can be used in mock |
| // functions of than one type, e.g. Return()). |
| // |
| // To define a polymorphic action, a user first provides a COPYABLE |
| // implementation class that has a Perform() method template: |
| // |
| // class FooAction { |
| // public: |
| // template <typename Result, typename ArgumentTuple> |
| // Result Perform(const ArgumentTuple& args) const { |
| // // Processes the arguments and returns a result, using |
| // // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple. |
| // } |
| // ... |
| // }; |
| // |
| // Then the user creates the polymorphic action using |
| // MakePolymorphicAction(object) where object has type FooAction. See |
| // the definition of Return(void) and SetArgumentPointee<N>(value) for |
| // complete examples. |
| template <typename Impl> |
| class PolymorphicAction { |
| public: |
| explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} |
| |
| template <typename F> |
| operator Action<F>() const { |
| return Action<F>(new MonomorphicImpl<F>(impl_)); |
| } |
| |
| private: |
| template <typename F> |
| class MonomorphicImpl : public ActionInterface<F> { |
| public: |
| typedef typename internal::Function<F>::Result Result; |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} |
| |
| virtual Result Perform(const ArgumentTuple& args) { |
| return impl_.template Perform<Result>(args); |
| } |
| |
| private: |
| Impl impl_; |
| |
| GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); |
| }; |
| |
| Impl impl_; |
| |
| GTEST_DISALLOW_ASSIGN_(PolymorphicAction); |
| }; |
| |
| // Creates an Action from its implementation and returns it. The |
| // created Action object owns the implementation. |
| template <typename F> |
| Action<F> MakeAction(ActionInterface<F>* impl) { |
| return Action<F>(impl); |
| } |
| |
| // Creates a polymorphic action from its implementation. This is |
| // easier to use than the PolymorphicAction<Impl> constructor as it |
| // doesn't require you to explicitly write the template argument, e.g. |
| // |
| // MakePolymorphicAction(foo); |
| // vs |
| // PolymorphicAction<TypeOfFoo>(foo); |
| template <typename Impl> |
| inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { |
| return PolymorphicAction<Impl>(impl); |
| } |
| |
| namespace internal { |
| |
| // Allows an Action<F2> object to pose as an Action<F1>, as long as F2 |
| // and F1 are compatible. |
| template <typename F1, typename F2> |
| class ActionAdaptor : public ActionInterface<F1> { |
| public: |
| typedef typename internal::Function<F1>::Result Result; |
| typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple; |
| |
| explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {} |
| |
| virtual Result Perform(const ArgumentTuple& args) { |
| return impl_->Perform(args); |
| } |
| |
| private: |
| const internal::linked_ptr<ActionInterface<F2> > impl_; |
| |
| GTEST_DISALLOW_ASSIGN_(ActionAdaptor); |
| }; |
| |
| // Implements the polymorphic Return(x) action, which can be used in |
| // any function that returns the type of x, regardless of the argument |
| // types. |
| // |
| // Note: The value passed into Return must be converted into |
| // Function<F>::Result when this action is cast to Action<F> rather than |
| // when that action is performed. This is important in scenarios like |
| // |
| // MOCK_METHOD1(Method, T(U)); |
| // ... |
| // { |
| // Foo foo; |
| // X x(&foo); |
| // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); |
| // } |
| // |
| // In the example above the variable x holds reference to foo which leaves |
| // scope and gets destroyed. If copying X just copies a reference to foo, |
| // that copy will be left with a hanging reference. If conversion to T |
| // makes a copy of foo, the above code is safe. To support that scenario, we |
| // need to make sure that the type conversion happens inside the EXPECT_CALL |
| // statement, and conversion of the result of Return to Action<T(U)> is a |
| // good place for that. |
| // |
| template <typename R> |
| class ReturnAction { |
| public: |
| // Constructs a ReturnAction object from the value to be returned. |
| // 'value' is passed by value instead of by const reference in order |
| // to allow Return("string literal") to compile. |
| explicit ReturnAction(R value) : value_(value) {} |
| |
| // This template type conversion operator allows Return(x) to be |
| // used in ANY function that returns x's type. |
| template <typename F> |
| operator Action<F>() const { |
| // Assert statement belongs here because this is the best place to verify |
| // conditions on F. It produces the clearest error messages |
| // in most compilers. |
| // Impl really belongs in this scope as a local class but can't |
| // because MSVC produces duplicate symbols in different translation units |
| // in this case. Until MS fixes that bug we put Impl into the class scope |
| // and put the typedef both here (for use in assert statement) and |
| // in the Impl class. But both definitions must be the same. |
| typedef typename Function<F>::Result Result; |
| GTEST_COMPILE_ASSERT_( |
| !internal::is_reference<Result>::value, |
| use_ReturnRef_instead_of_Return_to_return_a_reference); |
| return Action<F>(new Impl<F>(value_)); |
| } |
| |
| private: |
| // Implements the Return(x) action for a particular function type F. |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| |
| // The implicit cast is necessary when Result has more than one |
| // single-argument constructor (e.g. Result is std::vector<int>) and R |
| // has a type conversion operator template. In that case, value_(value) |
| // won't compile as the compiler doesn't known which constructor of |
| // Result to call. ImplicitCast_ forces the compiler to convert R to |
| // Result without considering explicit constructors, thus resolving the |
| // ambiguity. value_ is then initialized using its copy constructor. |
| explicit Impl(R value) |
| : value_(::testing::internal::ImplicitCast_<Result>(value)) {} |
| |
| virtual Result Perform(const ArgumentTuple&) { return value_; } |
| |
| private: |
| GTEST_COMPILE_ASSERT_(!internal::is_reference<Result>::value, |
| Result_cannot_be_a_reference_type); |
| Result value_; |
| |
| GTEST_DISALLOW_ASSIGN_(Impl); |
| }; |
| |
| R value_; |
| |
| GTEST_DISALLOW_ASSIGN_(ReturnAction); |
| }; |
| |
| // Implements the ReturnNull() action. |
| class ReturnNullAction { |
| public: |
| // Allows ReturnNull() to be used in any pointer-returning function. |
| template <typename Result, typename ArgumentTuple> |
| static Result Perform(const ArgumentTuple&) { |
| GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value, |
| ReturnNull_can_be_used_to_return_a_pointer_only); |
| return NULL; |
| } |
| }; |
| |
| // Implements the Return() action. |
| class ReturnVoidAction { |
| public: |
| // Allows Return() to be used in any void-returning function. |
| template <typename Result, typename ArgumentTuple> |
| static void Perform(const ArgumentTuple&) { |
| CompileAssertTypesEqual<void, Result>(); |
| } |
| }; |
| |
| // Implements the polymorphic ReturnRef(x) action, which can be used |
| // in any function that returns a reference to the type of x, |
| // regardless of the argument types. |
| template <typename T> |
| class ReturnRefAction { |
| public: |
| // Constructs a ReturnRefAction object from the reference to be returned. |
| explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT |
| |
| // This template type conversion operator allows ReturnRef(x) to be |
| // used in ANY function that returns a reference to x's type. |
| template <typename F> |
| operator Action<F>() const { |
| typedef typename Function<F>::Result Result; |
| // Asserts that the function return type is a reference. This |
| // catches the user error of using ReturnRef(x) when Return(x) |
| // should be used, and generates some helpful error message. |
| GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value, |
| use_Return_instead_of_ReturnRef_to_return_a_value); |
| return Action<F>(new Impl<F>(ref_)); |
| } |
| |
| private: |
| // Implements the ReturnRef(x) action for a particular function type F. |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit Impl(T& ref) : ref_(ref) {} // NOLINT |
| |
| virtual Result Perform(const ArgumentTuple&) { |
| return ref_; |
| } |
| |
| private: |
| T& ref_; |
| |
| GTEST_DISALLOW_ASSIGN_(Impl); |
| }; |
| |
| T& ref_; |
| |
| GTEST_DISALLOW_ASSIGN_(ReturnRefAction); |
| }; |
| |
| // Implements the polymorphic ReturnRefOfCopy(x) action, which can be |
| // used in any function that returns a reference to the type of x, |
| // regardless of the argument types. |
| template <typename T> |
| class ReturnRefOfCopyAction { |
| public: |
| // Constructs a ReturnRefOfCopyAction object from the reference to |
| // be returned. |
| explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT |
| |
| // This template type conversion operator allows ReturnRefOfCopy(x) to be |
| // used in ANY function that returns a reference to x's type. |
| template <typename F> |
| operator Action<F>() const { |
| typedef typename Function<F>::Result Result; |
| // Asserts that the function return type is a reference. This |
| // catches the user error of using ReturnRefOfCopy(x) when Return(x) |
| // should be used, and generates some helpful error message. |
| GTEST_COMPILE_ASSERT_( |
| internal::is_reference<Result>::value, |
| use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); |
| return Action<F>(new Impl<F>(value_)); |
| } |
| |
| private: |
| // Implements the ReturnRefOfCopy(x) action for a particular function type F. |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit Impl(const T& value) : value_(value) {} // NOLINT |
| |
| virtual Result Perform(const ArgumentTuple&) { |
| return value_; |
| } |
| |
| private: |
| T value_; |
| |
| GTEST_DISALLOW_ASSIGN_(Impl); |
| }; |
| |
| const T value_; |
| |
| GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction); |
| }; |
| |
| // Implements the polymorphic DoDefault() action. |
| class DoDefaultAction { |
| public: |
| // This template type conversion operator allows DoDefault() to be |
| // used in any function. |
| template <typename F> |
| operator Action<F>() const { return Action<F>(NULL); } |
| }; |
| |
| // Implements the Assign action to set a given pointer referent to a |
| // particular value. |
| template <typename T1, typename T2> |
| class AssignAction { |
| public: |
| AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} |
| |
| template <typename Result, typename ArgumentTuple> |
| void Perform(const ArgumentTuple& /* args */) const { |
| *ptr_ = value_; |
| } |
| |
| private: |
| T1* const ptr_; |
| const T2 value_; |
| |
| GTEST_DISALLOW_ASSIGN_(AssignAction); |
| }; |
| |
| #if !GTEST_OS_WINDOWS_MOBILE |
| |
| // Implements the SetErrnoAndReturn action to simulate return from |
| // various system calls and libc functions. |
| template <typename T> |
| class SetErrnoAndReturnAction { |
| public: |
| SetErrnoAndReturnAction(int errno_value, T result) |
| : errno_(errno_value), |
| result_(result) {} |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple& /* args */) const { |
| errno = errno_; |
| return result_; |
| } |
| |
| private: |
| const int errno_; |
| const T result_; |
| |
| GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction); |
| }; |
| |
| #endif // !GTEST_OS_WINDOWS_MOBILE |
| |
| // Implements the SetArgumentPointee<N>(x) action for any function |
| // whose N-th argument (0-based) is a pointer to x's type. The |
| // template parameter kIsProto is true iff type A is ProtocolMessage, |
| // proto2::Message, or a sub-class of those. |
| template <size_t N, typename A, bool kIsProto> |
| class SetArgumentPointeeAction { |
| public: |
| // Constructs an action that sets the variable pointed to by the |
| // N-th function argument to 'value'. |
| explicit SetArgumentPointeeAction(const A& value) : value_(value) {} |
| |
| template <typename Result, typename ArgumentTuple> |
| void Perform(const ArgumentTuple& args) const { |
| CompileAssertTypesEqual<void, Result>(); |
| *::std::tr1::get<N>(args) = value_; |
| } |
| |
| private: |
| const A value_; |
| |
| GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); |
| }; |
| |
| template <size_t N, typename Proto> |
| class SetArgumentPointeeAction<N, Proto, true> { |
| public: |
| // Constructs an action that sets the variable pointed to by the |
| // N-th function argument to 'proto'. Both ProtocolMessage and |
| // proto2::Message have the CopyFrom() method, so the same |
| // implementation works for both. |
| explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) { |
| proto_->CopyFrom(proto); |
| } |
| |
| template <typename Result, typename ArgumentTuple> |
| void Perform(const ArgumentTuple& args) const { |
| CompileAssertTypesEqual<void, Result>(); |
| ::std::tr1::get<N>(args)->CopyFrom(*proto_); |
| } |
| |
| private: |
| const internal::linked_ptr<Proto> proto_; |
| |
| GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); |
| }; |
| |
| // Implements the InvokeWithoutArgs(f) action. The template argument |
| // FunctionImpl is the implementation type of f, which can be either a |
| // function pointer or a functor. InvokeWithoutArgs(f) can be used as an |
| // Action<F> as long as f's type is compatible with F (i.e. f can be |
| // assigned to a tr1::function<F>). |
| template <typename FunctionImpl> |
| class InvokeWithoutArgsAction { |
| public: |
| // The c'tor makes a copy of function_impl (either a function |
| // pointer or a functor). |
| explicit InvokeWithoutArgsAction(FunctionImpl function_impl) |
| : function_impl_(function_impl) {} |
| |
| // Allows InvokeWithoutArgs(f) to be used as any action whose type is |
| // compatible with f. |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple&) { return function_impl_(); } |
| |
| private: |
| FunctionImpl function_impl_; |
| |
| GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction); |
| }; |
| |
| // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. |
| template <class Class, typename MethodPtr> |
| class InvokeMethodWithoutArgsAction { |
| public: |
| InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr) |
| : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} |
| |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple&) const { |
| return (obj_ptr_->*method_ptr_)(); |
| } |
| |
| private: |
| Class* const obj_ptr_; |
| const MethodPtr method_ptr_; |
| |
| GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction); |
| }; |
| |
| // Implements the IgnoreResult(action) action. |
| template <typename A> |
| class IgnoreResultAction { |
| public: |
| explicit IgnoreResultAction(const A& action) : action_(action) {} |
| |
| template <typename F> |
| operator Action<F>() const { |
| // Assert statement belongs here because this is the best place to verify |
| // conditions on F. It produces the clearest error messages |
| // in most compilers. |
| // Impl really belongs in this scope as a local class but can't |
| // because MSVC produces duplicate symbols in different translation units |
| // in this case. Until MS fixes that bug we put Impl into the class scope |
| // and put the typedef both here (for use in assert statement) and |
| // in the Impl class. But both definitions must be the same. |
| typedef typename internal::Function<F>::Result Result; |
| |
| // Asserts at compile time that F returns void. |
| CompileAssertTypesEqual<void, Result>(); |
| |
| return Action<F>(new Impl<F>(action_)); |
| } |
| |
| private: |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename internal::Function<F>::Result Result; |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit Impl(const A& action) : action_(action) {} |
| |
| virtual void Perform(const ArgumentTuple& args) { |
| // Performs the action and ignores its result. |
| action_.Perform(args); |
| } |
| |
| private: |
| // Type OriginalFunction is the same as F except that its return |
| // type is IgnoredValue. |
| typedef typename internal::Function<F>::MakeResultIgnoredValue |
| OriginalFunction; |
| |
| const Action<OriginalFunction> action_; |
| |
| GTEST_DISALLOW_ASSIGN_(Impl); |
| }; |
| |
| const A action_; |
| |
| GTEST_DISALLOW_ASSIGN_(IgnoreResultAction); |
| }; |
| |
| // A ReferenceWrapper<T> object represents a reference to type T, |
| // which can be either const or not. It can be explicitly converted |
| // from, and implicitly converted to, a T&. Unlike a reference, |
| // ReferenceWrapper<T> can be copied and can survive template type |
| // inference. This is used to support by-reference arguments in the |
| // InvokeArgument<N>(...) action. The idea was from "reference |
| // wrappers" in tr1, which we don't have in our source tree yet. |
| template <typename T> |
| class ReferenceWrapper { |
| public: |
| // Constructs a ReferenceWrapper<T> object from a T&. |
| explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT |
| |
| // Allows a ReferenceWrapper<T> object to be implicitly converted to |
| // a T&. |
| operator T&() const { return *pointer_; } |
| private: |
| T* pointer_; |
| }; |
| |
| // Allows the expression ByRef(x) to be printed as a reference to x. |
| template <typename T> |
| void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) { |
| T& value = ref; |
| UniversalPrinter<T&>::Print(value, os); |
| } |
| |
| // Does two actions sequentially. Used for implementing the DoAll(a1, |
| // a2, ...) action. |
| template <typename Action1, typename Action2> |
| class DoBothAction { |
| public: |
| DoBothAction(Action1 action1, Action2 action2) |
| : action1_(action1), action2_(action2) {} |
| |
| // This template type conversion operator allows DoAll(a1, ..., a_n) |
| // to be used in ANY function of compatible type. |
| template <typename F> |
| operator Action<F>() const { |
| return Action<F>(new Impl<F>(action1_, action2_)); |
| } |
| |
| private: |
| // Implements the DoAll(...) action for a particular function type F. |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| typedef typename Function<F>::MakeResultVoid VoidResult; |
| |
| Impl(const Action<VoidResult>& action1, const Action<F>& action2) |
| : action1_(action1), action2_(action2) {} |
| |
| virtual Result Perform(const ArgumentTuple& args) { |
| action1_.Perform(args); |
| return action2_.Perform(args); |
| } |
| |
| private: |
| const Action<VoidResult> action1_; |
| const Action<F> action2_; |
| |
| GTEST_DISALLOW_ASSIGN_(Impl); |
| }; |
| |
| Action1 action1_; |
| Action2 action2_; |
| |
| GTEST_DISALLOW_ASSIGN_(DoBothAction); |
| }; |
| |
| } // namespace internal |
| |
| // An Unused object can be implicitly constructed from ANY value. |
| // This is handy when defining actions that ignore some or all of the |
| // mock function arguments. For example, given |
| // |
| // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); |
| // MOCK_METHOD3(Bar, double(int index, double x, double y)); |
| // |
| // instead of |
| // |
| // double DistanceToOriginWithLabel(const string& label, double x, double y) { |
| // return sqrt(x*x + y*y); |
| // } |
| // double DistanceToOriginWithIndex(int index, double x, double y) { |
| // return sqrt(x*x + y*y); |
| // } |
| // ... |
| // EXEPCT_CALL(mock, Foo("abc", _, _)) |
| // .WillOnce(Invoke(DistanceToOriginWithLabel)); |
| // EXEPCT_CALL(mock, Bar(5, _, _)) |
| // .WillOnce(Invoke(DistanceToOriginWithIndex)); |
| // |
| // you could write |
| // |
| // // We can declare any uninteresting argument as Unused. |
| // double DistanceToOrigin(Unused, double x, double y) { |
| // return sqrt(x*x + y*y); |
| // } |
| // ... |
| // EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); |
| // EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); |
| typedef internal::IgnoredValue Unused; |
| |
| // This constructor allows us to turn an Action<From> object into an |
| // Action<To>, as long as To's arguments can be implicitly converted |
| // to From's and From's return type cann be implicitly converted to |
| // To's. |
| template <typename To> |
| template <typename From> |
| Action<To>::Action(const Action<From>& from) |
| : impl_(new internal::ActionAdaptor<To, From>(from)) {} |
| |
| // Creates an action that returns 'value'. 'value' is passed by value |
| // instead of const reference - otherwise Return("string literal") |
| // will trigger a compiler error about using array as initializer. |
| template <typename R> |
| internal::ReturnAction<R> Return(R value) { |
| return internal::ReturnAction<R>(value); |
| } |
| |
| // Creates an action that returns NULL. |
| inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { |
| return MakePolymorphicAction(internal::ReturnNullAction()); |
| } |
| |
| // Creates an action that returns from a void function. |
| inline PolymorphicAction<internal::ReturnVoidAction> Return() { |
| return MakePolymorphicAction(internal::ReturnVoidAction()); |
| } |
| |
| // Creates an action that returns the reference to a variable. |
| template <typename R> |
| inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT |
| return internal::ReturnRefAction<R>(x); |
| } |
| |
| // Creates an action that returns the reference to a copy of the |
| // argument. The copy is created when the action is constructed and |
| // lives as long as the action. |
| template <typename R> |
| inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { |
| return internal::ReturnRefOfCopyAction<R>(x); |
| } |
| |
| // Creates an action that does the default action for the give mock function. |
| inline internal::DoDefaultAction DoDefault() { |
| return internal::DoDefaultAction(); |
| } |
| |
| // Creates an action that sets the variable pointed by the N-th |
| // (0-based) function argument to 'value'. |
| template <size_t N, typename T> |
| PolymorphicAction< |
| internal::SetArgumentPointeeAction< |
| N, T, internal::IsAProtocolMessage<T>::value> > |
| SetArgPointee(const T& x) { |
| return MakePolymorphicAction(internal::SetArgumentPointeeAction< |
| N, T, internal::IsAProtocolMessage<T>::value>(x)); |
| } |
| |
| #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN) |
| // This overload allows SetArgPointee() to accept a string literal. |
| // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish |
| // this overload from the templated version and emit a compile error. |
| template <size_t N> |
| PolymorphicAction< |
| internal::SetArgumentPointeeAction<N, const char*, false> > |
| SetArgPointee(const char* p) { |
| return MakePolymorphicAction(internal::SetArgumentPointeeAction< |
| N, const char*, false>(p)); |
| } |
| |
| template <size_t N> |
| PolymorphicAction< |
| internal::SetArgumentPointeeAction<N, const wchar_t*, false> > |
| SetArgPointee(const wchar_t* p) { |
| return MakePolymorphicAction(internal::SetArgumentPointeeAction< |
| N, const wchar_t*, false>(p)); |
| } |
| #endif |
| |
| // The following version is DEPRECATED. |
| template <size_t N, typename T> |
| PolymorphicAction< |
| internal::SetArgumentPointeeAction< |
| N, T, internal::IsAProtocolMessage<T>::value> > |
| SetArgumentPointee(const T& x) { |
| return MakePolymorphicAction(internal::SetArgumentPointeeAction< |
| N, T, internal::IsAProtocolMessage<T>::value>(x)); |
| } |
| |
| // Creates an action that sets a pointer referent to a given value. |
| template <typename T1, typename T2> |
| PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { |
| return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); |
| } |
| |
| #if !GTEST_OS_WINDOWS_MOBILE |
| |
| // Creates an action that sets errno and returns the appropriate error. |
| template <typename T> |
| PolymorphicAction<internal::SetErrnoAndReturnAction<T> > |
| SetErrnoAndReturn(int errval, T result) { |
| return MakePolymorphicAction( |
| internal::SetErrnoAndReturnAction<T>(errval, result)); |
| } |
| |
| #endif // !GTEST_OS_WINDOWS_MOBILE |
| |
| // Various overloads for InvokeWithoutArgs(). |
| |
| // Creates an action that invokes 'function_impl' with no argument. |
| template <typename FunctionImpl> |
| PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> > |
| InvokeWithoutArgs(FunctionImpl function_impl) { |
| return MakePolymorphicAction( |
| internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl)); |
| } |
| |
| // Creates an action that invokes the given method on the given object |
| // with no argument. |
| template <class Class, typename MethodPtr> |
| PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> > |
| InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) { |
| return MakePolymorphicAction( |
| internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>( |
| obj_ptr, method_ptr)); |
| } |
| |
| // Creates an action that performs an_action and throws away its |
| // result. In other words, it changes the return type of an_action to |
| // void. an_action MUST NOT return void, or the code won't compile. |
| template <typename A> |
| inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { |
| return internal::IgnoreResultAction<A>(an_action); |
| } |
| |
| // Creates a reference wrapper for the given L-value. If necessary, |
| // you can explicitly specify the type of the reference. For example, |
| // suppose 'derived' is an object of type Derived, ByRef(derived) |
| // would wrap a Derived&. If you want to wrap a const Base& instead, |
| // where Base is a base class of Derived, just write: |
| // |
| // ByRef<const Base>(derived) |
| template <typename T> |
| inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT |
| return internal::ReferenceWrapper<T>(l_value); |
| } |
| |
| } // namespace testing |
| |
| #endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements some commonly used cardinalities. More |
| // cardinalities can be defined by the user implementing the |
| // CardinalityInterface interface if necessary. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ |
| |
| #include <limits.h> |
| #include <ostream> // NOLINT |
| |
| namespace testing { |
| |
| // To implement a cardinality Foo, define: |
| // 1. a class FooCardinality that implements the |
| // CardinalityInterface interface, and |
| // 2. a factory function that creates a Cardinality object from a |
| // const FooCardinality*. |
| // |
| // The two-level delegation design follows that of Matcher, providing |
| // consistency for extension developers. It also eases ownership |
| // management as Cardinality objects can now be copied like plain values. |
| |
| // The implementation of a cardinality. |
| class CardinalityInterface { |
| public: |
| virtual ~CardinalityInterface() {} |
| |
| // Conservative estimate on the lower/upper bound of the number of |
| // calls allowed. |
| virtual int ConservativeLowerBound() const { return 0; } |
| virtual int ConservativeUpperBound() const { return INT_MAX; } |
| |
| // Returns true iff call_count calls will satisfy this cardinality. |
| virtual bool IsSatisfiedByCallCount(int call_count) const = 0; |
| |
| // Returns true iff call_count calls will saturate this cardinality. |
| virtual bool IsSaturatedByCallCount(int call_count) const = 0; |
| |
| // Describes self to an ostream. |
| virtual void DescribeTo(::std::ostream* os) const = 0; |
| }; |
| |
| // A Cardinality is a copyable and IMMUTABLE (except by assignment) |
| // object that specifies how many times a mock function is expected to |
| // be called. The implementation of Cardinality is just a linked_ptr |
| // to const CardinalityInterface, so copying is fairly cheap. |
| // Don't inherit from Cardinality! |
| class GTEST_API_ Cardinality { |
| public: |
| // Constructs a null cardinality. Needed for storing Cardinality |
| // objects in STL containers. |
| Cardinality() {} |
| |
| // Constructs a Cardinality from its implementation. |
| explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {} |
| |
| // Conservative estimate on the lower/upper bound of the number of |
| // calls allowed. |
| int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); } |
| int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); } |
| |
| // Returns true iff call_count calls will satisfy this cardinality. |
| bool IsSatisfiedByCallCount(int call_count) const { |
| return impl_->IsSatisfiedByCallCount(call_count); |
| } |
| |
| // Returns true iff call_count calls will saturate this cardinality. |
| bool IsSaturatedByCallCount(int call_count) const { |
| return impl_->IsSaturatedByCallCount(call_count); |
| } |
| |
| // Returns true iff call_count calls will over-saturate this |
| // cardinality, i.e. exceed the maximum number of allowed calls. |
| bool IsOverSaturatedByCallCount(int call_count) const { |
| return impl_->IsSaturatedByCallCount(call_count) && |
| !impl_->IsSatisfiedByCallCount(call_count); |
| } |
| |
| // Describes self to an ostream |
| void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } |
| |
| // Describes the given actual call count to an ostream. |
| static void DescribeActualCallCountTo(int actual_call_count, |
| ::std::ostream* os); |
| |
| private: |
| internal::linked_ptr<const CardinalityInterface> impl_; |
| }; |
| |
| // Creates a cardinality that allows at least n calls. |
| GTEST_API_ Cardinality AtLeast(int n); |
| |
| // Creates a cardinality that allows at most n calls. |
| GTEST_API_ Cardinality AtMost(int n); |
| |
| // Creates a cardinality that allows any number of calls. |
| GTEST_API_ Cardinality AnyNumber(); |
| |
| // Creates a cardinality that allows between min and max calls. |
| GTEST_API_ Cardinality Between(int min, int max); |
| |
| // Creates a cardinality that allows exactly n calls. |
| GTEST_API_ Cardinality Exactly(int n); |
| |
| // Creates a cardinality from its implementation. |
| inline Cardinality MakeCardinality(const CardinalityInterface* c) { |
| return Cardinality(c); |
| } |
| |
| } // namespace testing |
| |
| #endif // GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ |
| // This file was GENERATED by a script. DO NOT EDIT BY HAND!!! |
| |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements some commonly used variadic actions. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ |
| |
| |
| namespace testing { |
| namespace internal { |
| |
| // InvokeHelper<F> knows how to unpack an N-tuple and invoke an N-ary |
| // function or method with the unpacked values, where F is a function |
| // type that takes N arguments. |
| template <typename Result, typename ArgumentTuple> |
| class InvokeHelper; |
| |
| template <typename R> |
| class InvokeHelper<R, ::std::tr1::tuple<> > { |
| public: |
| template <typename Function> |
| static R Invoke(Function function, const ::std::tr1::tuple<>&) { |
| return function(); |
| } |
| |
| template <class Class, typename MethodPtr> |
| static R InvokeMethod(Class* obj_ptr, |
| MethodPtr method_ptr, |
| const ::std::tr1::tuple<>&) { |
| return (obj_ptr->*method_ptr)(); |
| } |
| }; |
| |
| template <typename R, typename A1> |
| class InvokeHelper<R, ::std::tr1::tuple<A1> > { |
| public: |
| template <typename Function> |
| static R Invoke(Function function, const ::std::tr1::tuple<A1>& args) { |
| using ::std::tr1::get; |
| return function(get<0>(args)); |
| } |
| |
| template <class Class, typename MethodPtr> |
| static R InvokeMethod(Class* obj_ptr, |
| MethodPtr method_ptr, |
| const ::std::tr1::tuple<A1>& args) { |
| using ::std::tr1::get; |
| return (obj_ptr->*method_ptr)(get<0>(args)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2> |
| class InvokeHelper<R, ::std::tr1::tuple<A1, A2> > { |
| public: |
| template <typename Function> |
| static R Invoke(Function function, const ::std::tr1::tuple<A1, A2>& args) { |
| using ::std::tr1::get; |
| return function(get<0>(args), get<1>(args)); |
| } |
| |
| template <class Class, typename MethodPtr> |
| static R InvokeMethod(Class* obj_ptr, |
| MethodPtr method_ptr, |
| const ::std::tr1::tuple<A1, A2>& args) { |
| using ::std::tr1::get; |
| return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3> |
| class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3> > { |
| public: |
| template <typename Function> |
| static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, |
| A3>& args) { |
| using ::std::tr1::get; |
| return function(get<0>(args), get<1>(args), get<2>(args)); |
| } |
| |
| template <class Class, typename MethodPtr> |
| static R InvokeMethod(Class* obj_ptr, |
| MethodPtr method_ptr, |
| const ::std::tr1::tuple<A1, A2, A3>& args) { |
| using ::std::tr1::get; |
| return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4> |
| class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4> > { |
| public: |
| template <typename Function> |
| static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, |
| A4>& args) { |
| using ::std::tr1::get; |
| return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args)); |
| } |
| |
| template <class Class, typename MethodPtr> |
| static R InvokeMethod(Class* obj_ptr, |
| MethodPtr method_ptr, |
| const ::std::tr1::tuple<A1, A2, A3, A4>& args) { |
| using ::std::tr1::get; |
| return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), |
| get<3>(args)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5> |
| class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5> > { |
| public: |
| template <typename Function> |
| static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4, |
| A5>& args) { |
| using ::std::tr1::get; |
| return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), |
| get<4>(args)); |
| } |
| |
| template <class Class, typename MethodPtr> |
| static R InvokeMethod(Class* obj_ptr, |
| MethodPtr method_ptr, |
| const ::std::tr1::tuple<A1, A2, A3, A4, A5>& args) { |
| using ::std::tr1::get; |
| return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), |
| get<3>(args), get<4>(args)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6> |
| class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6> > { |
| public: |
| template <typename Function> |
| static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4, |
| A5, A6>& args) { |
| using ::std::tr1::get; |
| return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), |
| get<4>(args), get<5>(args)); |
| } |
| |
| template <class Class, typename MethodPtr> |
| static R InvokeMethod(Class* obj_ptr, |
| MethodPtr method_ptr, |
| const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6>& args) { |
| using ::std::tr1::get; |
| return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), |
| get<3>(args), get<4>(args), get<5>(args)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7> |
| class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7> > { |
| public: |
| template <typename Function> |
| static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4, |
| A5, A6, A7>& args) { |
| using ::std::tr1::get; |
| return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), |
| get<4>(args), get<5>(args), get<6>(args)); |
| } |
| |
| template <class Class, typename MethodPtr> |
| static R InvokeMethod(Class* obj_ptr, |
| MethodPtr method_ptr, |
| const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, |
| A7>& args) { |
| using ::std::tr1::get; |
| return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), |
| get<3>(args), get<4>(args), get<5>(args), get<6>(args)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7, typename A8> |
| class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8> > { |
| public: |
| template <typename Function> |
| static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4, |
| A5, A6, A7, A8>& args) { |
| using ::std::tr1::get; |
| return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), |
| get<4>(args), get<5>(args), get<6>(args), get<7>(args)); |
| } |
| |
| template <class Class, typename MethodPtr> |
| static R InvokeMethod(Class* obj_ptr, |
| MethodPtr method_ptr, |
| const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, |
| A8>& args) { |
| using ::std::tr1::get; |
| return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), |
| get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7, typename A8, typename A9> |
| class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9> > { |
| public: |
| template <typename Function> |
| static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4, |
| A5, A6, A7, A8, A9>& args) { |
| using ::std::tr1::get; |
| return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), |
| get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args)); |
| } |
| |
| template <class Class, typename MethodPtr> |
| static R InvokeMethod(Class* obj_ptr, |
| MethodPtr method_ptr, |
| const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, |
| A9>& args) { |
| using ::std::tr1::get; |
| return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), |
| get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), |
| get<8>(args)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7, typename A8, typename A9, |
| typename A10> |
| class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9, |
| A10> > { |
| public: |
| template <typename Function> |
| static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4, |
| A5, A6, A7, A8, A9, A10>& args) { |
| using ::std::tr1::get; |
| return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args), |
| get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), |
| get<9>(args)); |
| } |
| |
| template <class Class, typename MethodPtr> |
| static R InvokeMethod(Class* obj_ptr, |
| MethodPtr method_ptr, |
| const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, |
| A9, A10>& args) { |
| using ::std::tr1::get; |
| return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args), |
| get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args), |
| get<8>(args), get<9>(args)); |
| } |
| }; |
| |
| // CallableHelper has static methods for invoking "callables", |
| // i.e. function pointers and functors. It uses overloading to |
| // provide a uniform interface for invoking different kinds of |
| // callables. In particular, you can use: |
| // |
| // CallableHelper<R>::Call(callable, a1, a2, ..., an) |
| // |
| // to invoke an n-ary callable, where R is its return type. If an |
| // argument, say a2, needs to be passed by reference, you should write |
| // ByRef(a2) instead of a2 in the above expression. |
| template <typename R> |
| class CallableHelper { |
| public: |
| // Calls a nullary callable. |
| template <typename Function> |
| static R Call(Function function) { return function(); } |
| |
| // Calls a unary callable. |
| |
| // We deliberately pass a1 by value instead of const reference here |
| // in case it is a C-string literal. If we had declared the |
| // parameter as 'const A1& a1' and write Call(function, "Hi"), the |
| // compiler would've thought A1 is 'char[3]', which causes trouble |
| // when you need to copy a value of type A1. By declaring the |
| // parameter as 'A1 a1', the compiler will correctly infer that A1 |
| // is 'const char*' when it sees Call(function, "Hi"). |
| // |
| // Since this function is defined inline, the compiler can get rid |
| // of the copying of the arguments. Therefore the performance won't |
| // be hurt. |
| template <typename Function, typename A1> |
| static R Call(Function function, A1 a1) { return function(a1); } |
| |
| // Calls a binary callable. |
| template <typename Function, typename A1, typename A2> |
| static R Call(Function function, A1 a1, A2 a2) { |
| return function(a1, a2); |
| } |
| |
| // Calls a ternary callable. |
| template <typename Function, typename A1, typename A2, typename A3> |
| static R Call(Function function, A1 a1, A2 a2, A3 a3) { |
| return function(a1, a2, a3); |
| } |
| |
| // Calls a 4-ary callable. |
| template <typename Function, typename A1, typename A2, typename A3, |
| typename A4> |
| static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4) { |
| return function(a1, a2, a3, a4); |
| } |
| |
| // Calls a 5-ary callable. |
| template <typename Function, typename A1, typename A2, typename A3, |
| typename A4, typename A5> |
| static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) { |
| return function(a1, a2, a3, a4, a5); |
| } |
| |
| // Calls a 6-ary callable. |
| template <typename Function, typename A1, typename A2, typename A3, |
| typename A4, typename A5, typename A6> |
| static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) { |
| return function(a1, a2, a3, a4, a5, a6); |
| } |
| |
| // Calls a 7-ary callable. |
| template <typename Function, typename A1, typename A2, typename A3, |
| typename A4, typename A5, typename A6, typename A7> |
| static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, |
| A7 a7) { |
| return function(a1, a2, a3, a4, a5, a6, a7); |
| } |
| |
| // Calls a 8-ary callable. |
| template <typename Function, typename A1, typename A2, typename A3, |
| typename A4, typename A5, typename A6, typename A7, typename A8> |
| static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, |
| A7 a7, A8 a8) { |
| return function(a1, a2, a3, a4, a5, a6, a7, a8); |
| } |
| |
| // Calls a 9-ary callable. |
| template <typename Function, typename A1, typename A2, typename A3, |
| typename A4, typename A5, typename A6, typename A7, typename A8, |
| typename A9> |
| static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, |
| A7 a7, A8 a8, A9 a9) { |
| return function(a1, a2, a3, a4, a5, a6, a7, a8, a9); |
| } |
| |
| // Calls a 10-ary callable. |
| template <typename Function, typename A1, typename A2, typename A3, |
| typename A4, typename A5, typename A6, typename A7, typename A8, |
| typename A9, typename A10> |
| static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, |
| A7 a7, A8 a8, A9 a9, A10 a10) { |
| return function(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10); |
| } |
| }; // class CallableHelper |
| |
| // An INTERNAL macro for extracting the type of a tuple field. It's |
| // subject to change without notice - DO NOT USE IN USER CODE! |
| #define GMOCK_FIELD_(Tuple, N) \ |
| typename ::std::tr1::tuple_element<N, Tuple>::type |
| |
| // SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::type is the |
| // type of an n-ary function whose i-th (1-based) argument type is the |
| // k{i}-th (0-based) field of ArgumentTuple, which must be a tuple |
| // type, and whose return type is Result. For example, |
| // SelectArgs<int, ::std::tr1::tuple<bool, char, double, long>, 0, 3>::type |
| // is int(bool, long). |
| // |
| // SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::Select(args) |
| // returns the selected fields (k1, k2, ..., k_n) of args as a tuple. |
| // For example, |
| // SelectArgs<int, ::std::tr1::tuple<bool, char, double>, 2, 0>::Select( |
| // ::std::tr1::make_tuple(true, 'a', 2.5)) |
| // returns ::std::tr1::tuple (2.5, true). |
| // |
| // The numbers in list k1, k2, ..., k_n must be >= 0, where n can be |
| // in the range [0, 10]. Duplicates are allowed and they don't have |
| // to be in an ascending or descending order. |
| |
| template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, |
| int k4, int k5, int k6, int k7, int k8, int k9, int k10> |
| class SelectArgs { |
| public: |
| typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), |
| GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), |
| GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), |
| GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7), |
| GMOCK_FIELD_(ArgumentTuple, k8), GMOCK_FIELD_(ArgumentTuple, k9), |
| GMOCK_FIELD_(ArgumentTuple, k10)); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& args) { |
| using ::std::tr1::get; |
| return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), |
| get<k4>(args), get<k5>(args), get<k6>(args), get<k7>(args), |
| get<k8>(args), get<k9>(args), get<k10>(args)); |
| } |
| }; |
| |
| template <typename Result, typename ArgumentTuple> |
| class SelectArgs<Result, ArgumentTuple, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1> { |
| public: |
| typedef Result type(); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& /* args */) { |
| using ::std::tr1::get; |
| return SelectedArgs(); |
| } |
| }; |
| |
| template <typename Result, typename ArgumentTuple, int k1> |
| class SelectArgs<Result, ArgumentTuple, |
| k1, -1, -1, -1, -1, -1, -1, -1, -1, -1> { |
| public: |
| typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1)); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& args) { |
| using ::std::tr1::get; |
| return SelectedArgs(get<k1>(args)); |
| } |
| }; |
| |
| template <typename Result, typename ArgumentTuple, int k1, int k2> |
| class SelectArgs<Result, ArgumentTuple, |
| k1, k2, -1, -1, -1, -1, -1, -1, -1, -1> { |
| public: |
| typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), |
| GMOCK_FIELD_(ArgumentTuple, k2)); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& args) { |
| using ::std::tr1::get; |
| return SelectedArgs(get<k1>(args), get<k2>(args)); |
| } |
| }; |
| |
| template <typename Result, typename ArgumentTuple, int k1, int k2, int k3> |
| class SelectArgs<Result, ArgumentTuple, |
| k1, k2, k3, -1, -1, -1, -1, -1, -1, -1> { |
| public: |
| typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), |
| GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3)); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& args) { |
| using ::std::tr1::get; |
| return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args)); |
| } |
| }; |
| |
| template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, |
| int k4> |
| class SelectArgs<Result, ArgumentTuple, |
| k1, k2, k3, k4, -1, -1, -1, -1, -1, -1> { |
| public: |
| typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), |
| GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), |
| GMOCK_FIELD_(ArgumentTuple, k4)); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& args) { |
| using ::std::tr1::get; |
| return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), |
| get<k4>(args)); |
| } |
| }; |
| |
| template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, |
| int k4, int k5> |
| class SelectArgs<Result, ArgumentTuple, |
| k1, k2, k3, k4, k5, -1, -1, -1, -1, -1> { |
| public: |
| typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), |
| GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), |
| GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5)); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& args) { |
| using ::std::tr1::get; |
| return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), |
| get<k4>(args), get<k5>(args)); |
| } |
| }; |
| |
| template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, |
| int k4, int k5, int k6> |
| class SelectArgs<Result, ArgumentTuple, |
| k1, k2, k3, k4, k5, k6, -1, -1, -1, -1> { |
| public: |
| typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), |
| GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), |
| GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), |
| GMOCK_FIELD_(ArgumentTuple, k6)); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& args) { |
| using ::std::tr1::get; |
| return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), |
| get<k4>(args), get<k5>(args), get<k6>(args)); |
| } |
| }; |
| |
| template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, |
| int k4, int k5, int k6, int k7> |
| class SelectArgs<Result, ArgumentTuple, |
| k1, k2, k3, k4, k5, k6, k7, -1, -1, -1> { |
| public: |
| typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), |
| GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), |
| GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), |
| GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7)); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& args) { |
| using ::std::tr1::get; |
| return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), |
| get<k4>(args), get<k5>(args), get<k6>(args), get<k7>(args)); |
| } |
| }; |
| |
| template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, |
| int k4, int k5, int k6, int k7, int k8> |
| class SelectArgs<Result, ArgumentTuple, |
| k1, k2, k3, k4, k5, k6, k7, k8, -1, -1> { |
| public: |
| typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), |
| GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), |
| GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), |
| GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7), |
| GMOCK_FIELD_(ArgumentTuple, k8)); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& args) { |
| using ::std::tr1::get; |
| return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), |
| get<k4>(args), get<k5>(args), get<k6>(args), get<k7>(args), |
| get<k8>(args)); |
| } |
| }; |
| |
| template <typename Result, typename ArgumentTuple, int k1, int k2, int k3, |
| int k4, int k5, int k6, int k7, int k8, int k9> |
| class SelectArgs<Result, ArgumentTuple, |
| k1, k2, k3, k4, k5, k6, k7, k8, k9, -1> { |
| public: |
| typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1), |
| GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3), |
| GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5), |
| GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7), |
| GMOCK_FIELD_(ArgumentTuple, k8), GMOCK_FIELD_(ArgumentTuple, k9)); |
| typedef typename Function<type>::ArgumentTuple SelectedArgs; |
| static SelectedArgs Select(const ArgumentTuple& args) { |
| using ::std::tr1::get; |
| return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args), |
| get<k4>(args), get<k5>(args), get<k6>(args), get<k7>(args), |
| get<k8>(args), get<k9>(args)); |
| } |
| }; |
| |
| #undef GMOCK_FIELD_ |
| |
| // Implements the WithArgs action. |
| template <typename InnerAction, int k1 = -1, int k2 = -1, int k3 = -1, |
| int k4 = -1, int k5 = -1, int k6 = -1, int k7 = -1, int k8 = -1, |
| int k9 = -1, int k10 = -1> |
| class WithArgsAction { |
| public: |
| explicit WithArgsAction(const InnerAction& action) : action_(action) {} |
| |
| template <typename F> |
| operator Action<F>() const { return MakeAction(new Impl<F>(action_)); } |
| |
| private: |
| template <typename F> |
| class Impl : public ActionInterface<F> { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| |
| explicit Impl(const InnerAction& action) : action_(action) {} |
| |
| virtual Result Perform(const ArgumentTuple& args) { |
| return action_.Perform(SelectArgs<Result, ArgumentTuple, k1, k2, k3, k4, |
| k5, k6, k7, k8, k9, k10>::Select(args)); |
| } |
| |
| private: |
| typedef typename SelectArgs<Result, ArgumentTuple, |
| k1, k2, k3, k4, k5, k6, k7, k8, k9, k10>::type InnerFunctionType; |
| |
| Action<InnerFunctionType> action_; |
| }; |
| |
| const InnerAction action_; |
| |
| GTEST_DISALLOW_ASSIGN_(WithArgsAction); |
| }; |
| |
| // A macro from the ACTION* family (defined later in this file) |
| // defines an action that can be used in a mock function. Typically, |
| // these actions only care about a subset of the arguments of the mock |
| // function. For example, if such an action only uses the second |
| // argument, it can be used in any mock function that takes >= 2 |
| // arguments where the type of the second argument is compatible. |
| // |
| // Therefore, the action implementation must be prepared to take more |
| // arguments than it needs. The ExcessiveArg type is used to |
| // represent those excessive arguments. In order to keep the compiler |
| // error messages tractable, we define it in the testing namespace |
| // instead of testing::internal. However, this is an INTERNAL TYPE |
| // and subject to change without notice, so a user MUST NOT USE THIS |
| // TYPE DIRECTLY. |
| struct ExcessiveArg {}; |
| |
| // A helper class needed for implementing the ACTION* macros. |
| template <typename Result, class Impl> |
| class ActionHelper { |
| public: |
| static Result Perform(Impl* impl, const ::std::tr1::tuple<>& args) { |
| using ::std::tr1::get; |
| return impl->template gmock_PerformImpl<>(args, ExcessiveArg(), |
| ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), |
| ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), |
| ExcessiveArg()); |
| } |
| |
| template <typename A0> |
| static Result Perform(Impl* impl, const ::std::tr1::tuple<A0>& args) { |
| using ::std::tr1::get; |
| return impl->template gmock_PerformImpl<A0>(args, get<0>(args), |
| ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), |
| ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), |
| ExcessiveArg()); |
| } |
| |
| template <typename A0, typename A1> |
| static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1>& args) { |
| using ::std::tr1::get; |
| return impl->template gmock_PerformImpl<A0, A1>(args, get<0>(args), |
| get<1>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), |
| ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), |
| ExcessiveArg()); |
| } |
| |
| template <typename A0, typename A1, typename A2> |
| static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2>& args) { |
| using ::std::tr1::get; |
| return impl->template gmock_PerformImpl<A0, A1, A2>(args, get<0>(args), |
| get<1>(args), get<2>(args), ExcessiveArg(), ExcessiveArg(), |
| ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), |
| ExcessiveArg()); |
| } |
| |
| template <typename A0, typename A1, typename A2, typename A3> |
| static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, |
| A3>& args) { |
| using ::std::tr1::get; |
| return impl->template gmock_PerformImpl<A0, A1, A2, A3>(args, get<0>(args), |
| get<1>(args), get<2>(args), get<3>(args), ExcessiveArg(), |
| ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), |
| ExcessiveArg()); |
| } |
| |
| template <typename A0, typename A1, typename A2, typename A3, typename A4> |
| static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, |
| A4>& args) { |
| using ::std::tr1::get; |
| return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4>(args, |
| get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), |
| ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), |
| ExcessiveArg()); |
| } |
| |
| template <typename A0, typename A1, typename A2, typename A3, typename A4, |
| typename A5> |
| static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4, |
| A5>& args) { |
| using ::std::tr1::get; |
| return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5>(args, |
| get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), |
| get<5>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), |
| ExcessiveArg()); |
| } |
| |
| template <typename A0, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6> |
| static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4, |
| A5, A6>& args) { |
| using ::std::tr1::get; |
| return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5, A6>(args, |
| get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args), |
| get<5>(args), get<6>(args), ExcessiveArg(), ExcessiveArg(), |
| ExcessiveArg()); |
| } |
| |
| template <typename A0, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7> |
| static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4, |
| A5, A6, A7>& args) { |
| using ::std::tr1::get; |
| return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5, A6, |
| A7>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), |
| get<4>(args), get<5>(args), get<6>(args), get<7>(args), ExcessiveArg(), |
| ExcessiveArg()); |
| } |
| |
| template <typename A0, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7, typename A8> |
| static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4, |
| A5, A6, A7, A8>& args) { |
| using ::std::tr1::get; |
| return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5, A6, A7, |
| A8>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), |
| get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), |
| ExcessiveArg()); |
| } |
| |
| template <typename A0, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7, typename A8, typename A9> |
| static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4, |
| A5, A6, A7, A8, A9>& args) { |
| using ::std::tr1::get; |
| return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5, A6, A7, A8, |
| A9>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args), |
| get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args), |
| get<9>(args)); |
| } |
| }; |
| |
| } // namespace internal |
| |
| // Various overloads for Invoke(). |
| |
| // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes |
| // the selected arguments of the mock function to an_action and |
| // performs it. It serves as an adaptor between actions with |
| // different argument lists. C++ doesn't support default arguments for |
| // function templates, so we have to overload it. |
| template <int k1, typename InnerAction> |
| inline internal::WithArgsAction<InnerAction, k1> |
| WithArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction, k1>(action); |
| } |
| |
| template <int k1, int k2, typename InnerAction> |
| inline internal::WithArgsAction<InnerAction, k1, k2> |
| WithArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction, k1, k2>(action); |
| } |
| |
| template <int k1, int k2, int k3, typename InnerAction> |
| inline internal::WithArgsAction<InnerAction, k1, k2, k3> |
| WithArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction, k1, k2, k3>(action); |
| } |
| |
| template <int k1, int k2, int k3, int k4, typename InnerAction> |
| inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4> |
| WithArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction, k1, k2, k3, k4>(action); |
| } |
| |
| template <int k1, int k2, int k3, int k4, int k5, typename InnerAction> |
| inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5> |
| WithArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5>(action); |
| } |
| |
| template <int k1, int k2, int k3, int k4, int k5, int k6, typename InnerAction> |
| inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6> |
| WithArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6>(action); |
| } |
| |
| template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, |
| typename InnerAction> |
| inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7> |
| WithArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, |
| k7>(action); |
| } |
| |
| template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, |
| typename InnerAction> |
| inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8> |
| WithArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, |
| k8>(action); |
| } |
| |
| template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, |
| int k9, typename InnerAction> |
| inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8, k9> |
| WithArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8, |
| k9>(action); |
| } |
| |
| template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, |
| int k9, int k10, typename InnerAction> |
| inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8, |
| k9, k10> |
| WithArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8, |
| k9, k10>(action); |
| } |
| |
| // Creates an action that does actions a1, a2, ..., sequentially in |
| // each invocation. |
| template <typename Action1, typename Action2> |
| inline internal::DoBothAction<Action1, Action2> |
| DoAll(Action1 a1, Action2 a2) { |
| return internal::DoBothAction<Action1, Action2>(a1, a2); |
| } |
| |
| template <typename Action1, typename Action2, typename Action3> |
| inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, |
| Action3> > |
| DoAll(Action1 a1, Action2 a2, Action3 a3) { |
| return DoAll(a1, DoAll(a2, a3)); |
| } |
| |
| template <typename Action1, typename Action2, typename Action3, |
| typename Action4> |
| inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, |
| internal::DoBothAction<Action3, Action4> > > |
| DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4) { |
| return DoAll(a1, DoAll(a2, a3, a4)); |
| } |
| |
| template <typename Action1, typename Action2, typename Action3, |
| typename Action4, typename Action5> |
| inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, |
| internal::DoBothAction<Action3, internal::DoBothAction<Action4, |
| Action5> > > > |
| DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5) { |
| return DoAll(a1, DoAll(a2, a3, a4, a5)); |
| } |
| |
| template <typename Action1, typename Action2, typename Action3, |
| typename Action4, typename Action5, typename Action6> |
| inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, |
| internal::DoBothAction<Action3, internal::DoBothAction<Action4, |
| internal::DoBothAction<Action5, Action6> > > > > |
| DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6) { |
| return DoAll(a1, DoAll(a2, a3, a4, a5, a6)); |
| } |
| |
| template <typename Action1, typename Action2, typename Action3, |
| typename Action4, typename Action5, typename Action6, typename Action7> |
| inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, |
| internal::DoBothAction<Action3, internal::DoBothAction<Action4, |
| internal::DoBothAction<Action5, internal::DoBothAction<Action6, |
| Action7> > > > > > |
| DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, |
| Action7 a7) { |
| return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7)); |
| } |
| |
| template <typename Action1, typename Action2, typename Action3, |
| typename Action4, typename Action5, typename Action6, typename Action7, |
| typename Action8> |
| inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, |
| internal::DoBothAction<Action3, internal::DoBothAction<Action4, |
| internal::DoBothAction<Action5, internal::DoBothAction<Action6, |
| internal::DoBothAction<Action7, Action8> > > > > > > |
| DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, |
| Action7 a7, Action8 a8) { |
| return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8)); |
| } |
| |
| template <typename Action1, typename Action2, typename Action3, |
| typename Action4, typename Action5, typename Action6, typename Action7, |
| typename Action8, typename Action9> |
| inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, |
| internal::DoBothAction<Action3, internal::DoBothAction<Action4, |
| internal::DoBothAction<Action5, internal::DoBothAction<Action6, |
| internal::DoBothAction<Action7, internal::DoBothAction<Action8, |
| Action9> > > > > > > > |
| DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, |
| Action7 a7, Action8 a8, Action9 a9) { |
| return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8, a9)); |
| } |
| |
| template <typename Action1, typename Action2, typename Action3, |
| typename Action4, typename Action5, typename Action6, typename Action7, |
| typename Action8, typename Action9, typename Action10> |
| inline internal::DoBothAction<Action1, internal::DoBothAction<Action2, |
| internal::DoBothAction<Action3, internal::DoBothAction<Action4, |
| internal::DoBothAction<Action5, internal::DoBothAction<Action6, |
| internal::DoBothAction<Action7, internal::DoBothAction<Action8, |
| internal::DoBothAction<Action9, Action10> > > > > > > > > |
| DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6, |
| Action7 a7, Action8 a8, Action9 a9, Action10 a10) { |
| return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8, a9, a10)); |
| } |
| |
| } // namespace testing |
| |
| // The ACTION* family of macros can be used in a namespace scope to |
| // define custom actions easily. The syntax: |
| // |
| // ACTION(name) { statements; } |
| // |
| // will define an action with the given name that executes the |
| // statements. The value returned by the statements will be used as |
| // the return value of the action. Inside the statements, you can |
| // refer to the K-th (0-based) argument of the mock function by |
| // 'argK', and refer to its type by 'argK_type'. For example: |
| // |
| // ACTION(IncrementArg1) { |
| // arg1_type temp = arg1; |
| // return ++(*temp); |
| // } |
| // |
| // allows you to write |
| // |
| // ...WillOnce(IncrementArg1()); |
| // |
| // You can also refer to the entire argument tuple and its type by |
| // 'args' and 'args_type', and refer to the mock function type and its |
| // return type by 'function_type' and 'return_type'. |
| // |
| // Note that you don't need to specify the types of the mock function |
| // arguments. However rest assured that your code is still type-safe: |
| // you'll get a compiler error if *arg1 doesn't support the ++ |
| // operator, or if the type of ++(*arg1) isn't compatible with the |
| // mock function's return type, for example. |
| // |
| // Sometimes you'll want to parameterize the action. For that you can use |
| // another macro: |
| // |
| // ACTION_P(name, param_name) { statements; } |
| // |
| // For example: |
| // |
| // ACTION_P(Add, n) { return arg0 + n; } |
| // |
| // will allow you to write: |
| // |
| // ...WillOnce(Add(5)); |
| // |
| // Note that you don't need to provide the type of the parameter |
| // either. If you need to reference the type of a parameter named |
| // 'foo', you can write 'foo_type'. For example, in the body of |
| // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type |
| // of 'n'. |
| // |
| // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support |
| // multi-parameter actions. |
| // |
| // For the purpose of typing, you can view |
| // |
| // ACTION_Pk(Foo, p1, ..., pk) { ... } |
| // |
| // as shorthand for |
| // |
| // template <typename p1_type, ..., typename pk_type> |
| // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } |
| // |
| // In particular, you can provide the template type arguments |
| // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); |
| // although usually you can rely on the compiler to infer the types |
| // for you automatically. You can assign the result of expression |
| // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., |
| // pk_type>. This can be useful when composing actions. |
| // |
| // You can also overload actions with different numbers of parameters: |
| // |
| // ACTION_P(Plus, a) { ... } |
| // ACTION_P2(Plus, a, b) { ... } |
| // |
| // While it's tempting to always use the ACTION* macros when defining |
| // a new action, you should also consider implementing ActionInterface |
| // or using MakePolymorphicAction() instead, especially if you need to |
| // use the action a lot. While these approaches require more work, |
| // they give you more control on the types of the mock function |
| // arguments and the action parameters, which in general leads to |
| // better compiler error messages that pay off in the long run. They |
| // also allow overloading actions based on parameter types (as opposed |
| // to just based on the number of parameters). |
| // |
| // CAVEAT: |
| // |
| // ACTION*() can only be used in a namespace scope. The reason is |
| // that C++ doesn't yet allow function-local types to be used to |
| // instantiate templates. The up-coming C++0x standard will fix this. |
| // Once that's done, we'll consider supporting using ACTION*() inside |
| // a function. |
| // |
| // MORE INFORMATION: |
| // |
| // To learn more about using these macros, please search for 'ACTION' |
| // on http://code.google.com/p/googlemock/wiki/CookBook. |
| |
| // An internal macro needed for implementing ACTION*(). |
| #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_\ |
| const args_type& args GTEST_ATTRIBUTE_UNUSED_, \ |
| arg0_type arg0 GTEST_ATTRIBUTE_UNUSED_, \ |
| arg1_type arg1 GTEST_ATTRIBUTE_UNUSED_, \ |
| arg2_type arg2 GTEST_ATTRIBUTE_UNUSED_, \ |
| arg3_type arg3 GTEST_ATTRIBUTE_UNUSED_, \ |
| arg4_type arg4 GTEST_ATTRIBUTE_UNUSED_, \ |
| arg5_type arg5 GTEST_ATTRIBUTE_UNUSED_, \ |
| arg6_type arg6 GTEST_ATTRIBUTE_UNUSED_, \ |
| arg7_type arg7 GTEST_ATTRIBUTE_UNUSED_, \ |
| arg8_type arg8 GTEST_ATTRIBUTE_UNUSED_, \ |
| arg9_type arg9 GTEST_ATTRIBUTE_UNUSED_ |
| |
| // Sometimes you want to give an action explicit template parameters |
| // that cannot be inferred from its value parameters. ACTION() and |
| // ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that |
| // and can be viewed as an extension to ACTION() and ACTION_P*(). |
| // |
| // The syntax: |
| // |
| // ACTION_TEMPLATE(ActionName, |
| // HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m), |
| // AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; } |
| // |
| // defines an action template that takes m explicit template |
| // parameters and n value parameters. name_i is the name of the i-th |
| // template parameter, and kind_i specifies whether it's a typename, |
| // an integral constant, or a template. p_i is the name of the i-th |
| // value parameter. |
| // |
| // Example: |
| // |
| // // DuplicateArg<k, T>(output) converts the k-th argument of the mock |
| // // function to type T and copies it to *output. |
| // ACTION_TEMPLATE(DuplicateArg, |
| // HAS_2_TEMPLATE_PARAMS(int, k, typename, T), |
| // AND_1_VALUE_PARAMS(output)) { |
| // *output = T(std::tr1::get<k>(args)); |
| // } |
| // ... |
| // int n; |
| // EXPECT_CALL(mock, Foo(_, _)) |
| // .WillOnce(DuplicateArg<1, unsigned char>(&n)); |
| // |
| // To create an instance of an action template, write: |
| // |
| // ActionName<t1, ..., t_m>(v1, ..., v_n) |
| // |
| // where the ts are the template arguments and the vs are the value |
| // arguments. The value argument types are inferred by the compiler. |
| // If you want to explicitly specify the value argument types, you can |
| // provide additional template arguments: |
| // |
| // ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n) |
| // |
| // where u_i is the desired type of v_i. |
| // |
| // ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the |
| // number of value parameters, but not on the number of template |
| // parameters. Without the restriction, the meaning of the following |
| // is unclear: |
| // |
| // OverloadedAction<int, bool>(x); |
| // |
| // Are we using a single-template-parameter action where 'bool' refers |
| // to the type of x, or are we using a two-template-parameter action |
| // where the compiler is asked to infer the type of x? |
| // |
| // Implementation notes: |
| // |
| // GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and |
| // GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for |
| // implementing ACTION_TEMPLATE. The main trick we use is to create |
| // new macro invocations when expanding a macro. For example, we have |
| // |
| // #define ACTION_TEMPLATE(name, template_params, value_params) |
| // ... GMOCK_INTERNAL_DECL_##template_params ... |
| // |
| // which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...) |
| // to expand to |
| // |
| // ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ... |
| // |
| // Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the |
| // preprocessor will continue to expand it to |
| // |
| // ... typename T ... |
| // |
| // This technique conforms to the C++ standard and is portable. It |
| // allows us to implement action templates using O(N) code, where N is |
| // the maximum number of template/value parameters supported. Without |
| // using it, we'd have to devote O(N^2) amount of code to implement all |
| // combinations of m and n. |
| |
| // Declares the template parameters. |
| #define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0 |
| #define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ |
| name1) kind0 name0, kind1 name1 |
| #define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2) kind0 name0, kind1 name1, kind2 name2 |
| #define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \ |
| kind3 name3 |
| #define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \ |
| kind2 name2, kind3 name3, kind4 name4 |
| #define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \ |
| kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5 |
| #define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ |
| name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \ |
| kind5 name5, kind6 name6 |
| #define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ |
| kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \ |
| kind4 name4, kind5 name5, kind6 name6, kind7 name7 |
| #define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ |
| kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \ |
| kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \ |
| kind8 name8 |
| #define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ |
| name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ |
| name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \ |
| kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \ |
| kind6 name6, kind7 name7, kind8 name8, kind9 name9 |
| |
| // Lists the template parameters. |
| #define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0 |
| #define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ |
| name1) name0, name1 |
| #define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2) name0, name1, name2 |
| #define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3) name0, name1, name2, name3 |
| #define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \ |
| name4 |
| #define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \ |
| name2, name3, name4, name5 |
| #define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ |
| name6) name0, name1, name2, name3, name4, name5, name6 |
| #define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ |
| kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7 |
| #define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ |
| kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ |
| kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \ |
| name6, name7, name8 |
| #define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ |
| name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ |
| name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \ |
| name3, name4, name5, name6, name7, name8, name9 |
| |
| // Declares the types of value parameters. |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS() |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \ |
| typename p0##_type, typename p1##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \ |
| typename p0##_type, typename p1##_type, typename p2##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ |
| typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ |
| typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ |
| typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6) , typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type |
| #define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \ |
| typename p2##_type, typename p3##_type, typename p4##_type, \ |
| typename p5##_type, typename p6##_type, typename p7##_type, \ |
| typename p8##_type, typename p9##_type |
| |
| // Initializes the value parameters. |
| #define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\ |
| () |
| #define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\ |
| (p0##_type gmock_p0) : p0(gmock_p0) |
| #define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), p1(gmock_p1) |
| #define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) |
| #define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3) |
| #define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), \ |
| p2(gmock_p2), p3(gmock_p3), p4(gmock_p4) |
| #define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) |
| #define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) |
| #define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6, p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), \ |
| p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ |
| p7(gmock_p7) |
| #define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6, p7##_type gmock_p7, \ |
| p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ |
| p8(gmock_p8) |
| #define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8, p9)\ |
| (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ |
| p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ |
| p8(gmock_p8), p9(gmock_p9) |
| |
| // Declares the fields for storing the value parameters. |
| #define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS() |
| #define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0; |
| #define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \ |
| p1##_type p1; |
| #define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \ |
| p1##_type p1; p2##_type p2; |
| #define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \ |
| p1##_type p1; p2##_type p2; p3##_type p3; |
| #define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ |
| p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; |
| #define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ |
| p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ |
| p5##_type p5; |
| #define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ |
| p5##_type p5; p6##_type p6; |
| #define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ |
| p5##_type p5; p6##_type p6; p7##_type p7; |
| #define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ |
| p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; |
| #define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ |
| p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \ |
| p9##_type p9; |
| |
| // Lists the value parameters. |
| #define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS() |
| #define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0 |
| #define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1 |
| #define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2 |
| #define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3 |
| #define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \ |
| p2, p3, p4 |
| #define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \ |
| p1, p2, p3, p4, p5 |
| #define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6) p0, p1, p2, p3, p4, p5, p6 |
| #define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7) p0, p1, p2, p3, p4, p5, p6, p7 |
| #define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8 |
| #define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9 |
| |
| // Lists the value parameter types. |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS() |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \ |
| p1##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \ |
| p1##_type, p2##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ |
| p0##_type, p1##_type, p2##_type, p3##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ |
| p0##_type, p1##_type, p2##_type, p3##_type, p4##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ |
| p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \ |
| p6##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type, p7##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type, p7##_type, p8##_type |
| #define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type, p7##_type, p8##_type, p9##_type |
| |
| // Declares the value parameters. |
| #define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS() |
| #define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0 |
| #define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \ |
| p1##_type p1 |
| #define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \ |
| p1##_type p1, p2##_type p2 |
| #define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \ |
| p1##_type p1, p2##_type p2, p3##_type p3 |
| #define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ |
| p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4 |
| #define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ |
| p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ |
| p5##_type p5 |
| #define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ |
| p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ |
| p5##_type p5, p6##_type p6 |
| #define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ |
| p5##_type p5, p6##_type p6, p7##_type p7 |
| #define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ |
| p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8 |
| #define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ |
| p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ |
| p9##_type p9 |
| |
| // The suffix of the class template implementing the action template. |
| #define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS() |
| #define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P |
| #define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2 |
| #define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3 |
| #define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4 |
| #define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5 |
| #define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6 |
| #define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7 |
| #define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7) P8 |
| #define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8) P9 |
| #define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ |
| p7, p8, p9) P10 |
| |
| // The name of the class template implementing the action template. |
| #define GMOCK_ACTION_CLASS_(name, value_params)\ |
| GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params) |
| |
| #define ACTION_TEMPLATE(name, template_params, value_params)\ |
| template <GMOCK_INTERNAL_DECL_##template_params\ |
| GMOCK_INTERNAL_DECL_TYPE_##value_params>\ |
| class GMOCK_ACTION_CLASS_(name, value_params) {\ |
| public:\ |
| GMOCK_ACTION_CLASS_(name, value_params)\ |
| GMOCK_INTERNAL_INIT_##value_params {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ |
| arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ |
| arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ |
| arg9_type arg9) const;\ |
| GMOCK_INTERNAL_DEFN_##value_params\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(\ |
| new gmock_Impl<F>(GMOCK_INTERNAL_LIST_##value_params));\ |
| }\ |
| GMOCK_INTERNAL_DEFN_##value_params\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(GMOCK_ACTION_CLASS_(name, value_params));\ |
| };\ |
| template <GMOCK_INTERNAL_DECL_##template_params\ |
| GMOCK_INTERNAL_DECL_TYPE_##value_params>\ |
| inline GMOCK_ACTION_CLASS_(name, value_params)<\ |
| GMOCK_INTERNAL_LIST_##template_params\ |
| GMOCK_INTERNAL_LIST_TYPE_##value_params> name(\ |
| GMOCK_INTERNAL_DECL_##value_params) {\ |
| return GMOCK_ACTION_CLASS_(name, value_params)<\ |
| GMOCK_INTERNAL_LIST_##template_params\ |
| GMOCK_INTERNAL_LIST_TYPE_##value_params>(\ |
| GMOCK_INTERNAL_LIST_##value_params);\ |
| }\ |
| template <GMOCK_INTERNAL_DECL_##template_params\ |
| GMOCK_INTERNAL_DECL_TYPE_##value_params>\ |
| template <typename F>\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| typename ::testing::internal::Function<F>::Result\ |
| GMOCK_ACTION_CLASS_(name, value_params)<\ |
| GMOCK_INTERNAL_LIST_##template_params\ |
| GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl<F>::\ |
| gmock_PerformImpl(\ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION(name)\ |
| class name##Action {\ |
| public:\ |
| name##Action() {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| gmock_Impl() {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ |
| arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ |
| arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ |
| arg9_type arg9) const;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(new gmock_Impl<F>());\ |
| }\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##Action);\ |
| };\ |
| inline name##Action name() {\ |
| return name##Action();\ |
| }\ |
| template <typename F>\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| typename ::testing::internal::Function<F>::Result\ |
| name##Action::gmock_Impl<F>::gmock_PerformImpl(\ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION_P(name, p0)\ |
| template <typename p0##_type>\ |
| class name##ActionP {\ |
| public:\ |
| name##ActionP(p0##_type gmock_p0) : p0(gmock_p0) {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| explicit gmock_Impl(p0##_type gmock_p0) : p0(gmock_p0) {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ |
| arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ |
| arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ |
| arg9_type arg9) const;\ |
| p0##_type p0;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(new gmock_Impl<F>(p0));\ |
| }\ |
| p0##_type p0;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##ActionP);\ |
| };\ |
| template <typename p0##_type>\ |
| inline name##ActionP<p0##_type> name(p0##_type p0) {\ |
| return name##ActionP<p0##_type>(p0);\ |
| }\ |
| template <typename p0##_type>\ |
| template <typename F>\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| typename ::testing::internal::Function<F>::Result\ |
| name##ActionP<p0##_type>::gmock_Impl<F>::gmock_PerformImpl(\ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION_P2(name, p0, p1)\ |
| template <typename p0##_type, typename p1##_type>\ |
| class name##ActionP2 {\ |
| public:\ |
| name##ActionP2(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \ |
| p1(gmock_p1) {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \ |
| p1(gmock_p1) {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ |
| arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ |
| arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ |
| arg9_type arg9) const;\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(new gmock_Impl<F>(p0, p1));\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##ActionP2);\ |
| };\ |
| template <typename p0##_type, typename p1##_type>\ |
| inline name##ActionP2<p0##_type, p1##_type> name(p0##_type p0, \ |
| p1##_type p1) {\ |
| return name##ActionP2<p0##_type, p1##_type>(p0, p1);\ |
| }\ |
| template <typename p0##_type, typename p1##_type>\ |
| template <typename F>\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| typename ::testing::internal::Function<F>::Result\ |
| name##ActionP2<p0##_type, p1##_type>::gmock_Impl<F>::gmock_PerformImpl(\ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION_P3(name, p0, p1, p2)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type>\ |
| class name##ActionP3 {\ |
| public:\ |
| name##ActionP3(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ |
| arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ |
| arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ |
| arg9_type arg9) const;\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2));\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##ActionP3);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type>\ |
| inline name##ActionP3<p0##_type, p1##_type, p2##_type> name(p0##_type p0, \ |
| p1##_type p1, p2##_type p2) {\ |
| return name##ActionP3<p0##_type, p1##_type, p2##_type>(p0, p1, p2);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type>\ |
| template <typename F>\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| typename ::testing::internal::Function<F>::Result\ |
| name##ActionP3<p0##_type, p1##_type, \ |
| p2##_type>::gmock_Impl<F>::gmock_PerformImpl(\ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION_P4(name, p0, p1, p2, p3)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type>\ |
| class name##ActionP4 {\ |
| public:\ |
| name##ActionP4(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), \ |
| p2(gmock_p2), p3(gmock_p3) {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3) {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ |
| arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ |
| arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ |
| arg9_type arg9) const;\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3));\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##ActionP4);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type>\ |
| inline name##ActionP4<p0##_type, p1##_type, p2##_type, \ |
| p3##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, \ |
| p3##_type p3) {\ |
| return name##ActionP4<p0##_type, p1##_type, p2##_type, p3##_type>(p0, p1, \ |
| p2, p3);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type>\ |
| template <typename F>\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| typename ::testing::internal::Function<F>::Result\ |
| name##ActionP4<p0##_type, p1##_type, p2##_type, \ |
| p3##_type>::gmock_Impl<F>::gmock_PerformImpl(\ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION_P5(name, p0, p1, p2, p3, p4)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type>\ |
| class name##ActionP5 {\ |
| public:\ |
| name##ActionP5(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3, \ |
| p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4) {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4) : p0(gmock_p0), \ |
| p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), p4(gmock_p4) {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ |
| arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ |
| arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ |
| arg9_type arg9) const;\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4));\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##ActionP5);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type>\ |
| inline name##ActionP5<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ |
| p4##_type p4) {\ |
| return name##ActionP5<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type>(p0, p1, p2, p3, p4);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type>\ |
| template <typename F>\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| typename ::testing::internal::Function<F>::Result\ |
| name##ActionP5<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type>::gmock_Impl<F>::gmock_PerformImpl(\ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION_P6(name, p0, p1, p2, p3, p4, p5)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type>\ |
| class name##ActionP6 {\ |
| public:\ |
| name##ActionP6(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ |
| arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ |
| arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ |
| arg9_type arg9) const;\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5));\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##ActionP6);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type>\ |
| inline name##ActionP6<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, \ |
| p3##_type p3, p4##_type p4, p5##_type p5) {\ |
| return name##ActionP6<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type>(p0, p1, p2, p3, p4, p5);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type>\ |
| template <typename F>\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| typename ::testing::internal::Function<F>::Result\ |
| name##ActionP6<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type>::gmock_Impl<F>::gmock_PerformImpl(\ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION_P7(name, p0, p1, p2, p3, p4, p5, p6)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type>\ |
| class name##ActionP7 {\ |
| public:\ |
| name##ActionP7(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5, p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), \ |
| p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), \ |
| p6(gmock_p6) {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ |
| arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ |
| arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ |
| arg9_type arg9) const;\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5, \ |
| p6));\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##ActionP7);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type>\ |
| inline name##ActionP7<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type> name(p0##_type p0, p1##_type p1, \ |
| p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ |
| p6##_type p6) {\ |
| return name##ActionP7<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type>(p0, p1, p2, p3, p4, p5, p6);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type>\ |
| template <typename F>\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| typename ::testing::internal::Function<F>::Result\ |
| name##ActionP7<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type>::gmock_Impl<F>::gmock_PerformImpl(\ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION_P8(name, p0, p1, p2, p3, p4, p5, p6, p7)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type>\ |
| class name##ActionP8 {\ |
| public:\ |
| name##ActionP8(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5, p6##_type gmock_p6, \ |
| p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ |
| p7(gmock_p7) {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6, p7##_type gmock_p7) : p0(gmock_p0), \ |
| p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), \ |
| p5(gmock_p5), p6(gmock_p6), p7(gmock_p7) {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ |
| arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ |
| arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ |
| arg9_type arg9) const;\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| p7##_type p7;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5, \ |
| p6, p7));\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| p7##_type p7;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##ActionP8);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type>\ |
| inline name##ActionP8<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type> name(p0##_type p0, \ |
| p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ |
| p6##_type p6, p7##_type p7) {\ |
| return name##ActionP8<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type>(p0, p1, p2, p3, p4, p5, \ |
| p6, p7);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type>\ |
| template <typename F>\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| typename ::testing::internal::Function<F>::Result\ |
| name##ActionP8<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type, \ |
| p7##_type>::gmock_Impl<F>::gmock_PerformImpl(\ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type>\ |
| class name##ActionP9 {\ |
| public:\ |
| name##ActionP9(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ |
| p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ |
| p8(gmock_p8) {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6, p7##_type gmock_p7, \ |
| p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ |
| p7(gmock_p7), p8(gmock_p8) {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ |
| arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ |
| arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ |
| arg9_type arg9) const;\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| p7##_type p7;\ |
| p8##_type p8;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5, \ |
| p6, p7, p8));\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| p7##_type p7;\ |
| p8##_type p8;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##ActionP9);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type>\ |
| inline name##ActionP9<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type, \ |
| p8##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ |
| p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, \ |
| p8##_type p8) {\ |
| return name##ActionP9<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type, p8##_type>(p0, p1, p2, \ |
| p3, p4, p5, p6, p7, p8);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type>\ |
| template <typename F>\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| typename ::testing::internal::Function<F>::Result\ |
| name##ActionP9<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type, p7##_type, \ |
| p8##_type>::gmock_Impl<F>::gmock_PerformImpl(\ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| #define ACTION_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type, \ |
| typename p9##_type>\ |
| class name##ActionP10 {\ |
| public:\ |
| name##ActionP10(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ |
| p8##_type gmock_p8, p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), \ |
| p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ |
| p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {}\ |
| template <typename F>\ |
| class gmock_Impl : public ::testing::ActionInterface<F> {\ |
| public:\ |
| typedef F function_type;\ |
| typedef typename ::testing::internal::Function<F>::Result return_type;\ |
| typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
| args_type;\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ |
| p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ |
| p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {}\ |
| virtual return_type Perform(const args_type& args) {\ |
| return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
| Perform(this, args);\ |
| }\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \ |
| arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \ |
| arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \ |
| arg9_type arg9) const;\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| p7##_type p7;\ |
| p8##_type p8;\ |
| p9##_type p9;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename F> operator ::testing::Action<F>() const {\ |
| return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5, \ |
| p6, p7, p8, p9));\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| p7##_type p7;\ |
| p8##_type p8;\ |
| p9##_type p9;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##ActionP10);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type, \ |
| typename p9##_type>\ |
| inline name##ActionP10<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, \ |
| p9##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ |
| p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ |
| p9##_type p9) {\ |
| return name##ActionP10<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, p9##_type>(p0, \ |
| p1, p2, p3, p4, p5, p6, p7, p8, p9);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type, \ |
| typename p9##_type>\ |
| template <typename F>\ |
| template <typename arg0_type, typename arg1_type, typename arg2_type, \ |
| typename arg3_type, typename arg4_type, typename arg5_type, \ |
| typename arg6_type, typename arg7_type, typename arg8_type, \ |
| typename arg9_type>\ |
| typename ::testing::internal::Function<F>::Result\ |
| name##ActionP10<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type, p7##_type, p8##_type, \ |
| p9##_type>::gmock_Impl<F>::gmock_PerformImpl(\ |
| GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
| |
| namespace testing { |
| |
| // The ACTION*() macros trigger warning C4100 (unreferenced formal |
| // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in |
| // the macro definition, as the warnings are generated when the macro |
| // is expanded and macro expansion cannot contain #pragma. Therefore |
| // we suppress them here. |
| #ifdef _MSC_VER |
| # pragma warning(push) |
| # pragma warning(disable:4100) |
| #endif |
| |
| // Various overloads for InvokeArgument<N>(). |
| // |
| // The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th |
| // (0-based) argument, which must be a k-ary callable, of the mock |
| // function, with arguments a1, a2, ..., a_k. |
| // |
| // Notes: |
| // |
| // 1. The arguments are passed by value by default. If you need to |
| // pass an argument by reference, wrap it inside ByRef(). For |
| // example, |
| // |
| // InvokeArgument<1>(5, string("Hello"), ByRef(foo)) |
| // |
| // passes 5 and string("Hello") by value, and passes foo by |
| // reference. |
| // |
| // 2. If the callable takes an argument by reference but ByRef() is |
| // not used, it will receive the reference to a copy of the value, |
| // instead of the original value. For example, when the 0-th |
| // argument of the mock function takes a const string&, the action |
| // |
| // InvokeArgument<0>(string("Hello")) |
| // |
| // makes a copy of the temporary string("Hello") object and passes a |
| // reference of the copy, instead of the original temporary object, |
| // to the callable. This makes it easy for a user to define an |
| // InvokeArgument action from temporary values and have it performed |
| // later. |
| |
| ACTION_TEMPLATE(InvokeArgument, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_0_VALUE_PARAMS()) { |
| return internal::CallableHelper<return_type>::Call( |
| ::std::tr1::get<k>(args)); |
| } |
| |
| ACTION_TEMPLATE(InvokeArgument, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_1_VALUE_PARAMS(p0)) { |
| return internal::CallableHelper<return_type>::Call( |
| ::std::tr1::get<k>(args), p0); |
| } |
| |
| ACTION_TEMPLATE(InvokeArgument, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_2_VALUE_PARAMS(p0, p1)) { |
| return internal::CallableHelper<return_type>::Call( |
| ::std::tr1::get<k>(args), p0, p1); |
| } |
| |
| ACTION_TEMPLATE(InvokeArgument, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_3_VALUE_PARAMS(p0, p1, p2)) { |
| return internal::CallableHelper<return_type>::Call( |
| ::std::tr1::get<k>(args), p0, p1, p2); |
| } |
| |
| ACTION_TEMPLATE(InvokeArgument, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_4_VALUE_PARAMS(p0, p1, p2, p3)) { |
| return internal::CallableHelper<return_type>::Call( |
| ::std::tr1::get<k>(args), p0, p1, p2, p3); |
| } |
| |
| ACTION_TEMPLATE(InvokeArgument, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) { |
| return internal::CallableHelper<return_type>::Call( |
| ::std::tr1::get<k>(args), p0, p1, p2, p3, p4); |
| } |
| |
| ACTION_TEMPLATE(InvokeArgument, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) { |
| return internal::CallableHelper<return_type>::Call( |
| ::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5); |
| } |
| |
| ACTION_TEMPLATE(InvokeArgument, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) { |
| return internal::CallableHelper<return_type>::Call( |
| ::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6); |
| } |
| |
| ACTION_TEMPLATE(InvokeArgument, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) { |
| return internal::CallableHelper<return_type>::Call( |
| ::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7); |
| } |
| |
| ACTION_TEMPLATE(InvokeArgument, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) { |
| return internal::CallableHelper<return_type>::Call( |
| ::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7, p8); |
| } |
| |
| ACTION_TEMPLATE(InvokeArgument, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) { |
| return internal::CallableHelper<return_type>::Call( |
| ::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7, p8, p9); |
| } |
| |
| // Various overloads for ReturnNew<T>(). |
| // |
| // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new |
| // instance of type T, constructed on the heap with constructor arguments |
| // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. |
| ACTION_TEMPLATE(ReturnNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_0_VALUE_PARAMS()) { |
| return new T(); |
| } |
| |
| ACTION_TEMPLATE(ReturnNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_1_VALUE_PARAMS(p0)) { |
| return new T(p0); |
| } |
| |
| ACTION_TEMPLATE(ReturnNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_2_VALUE_PARAMS(p0, p1)) { |
| return new T(p0, p1); |
| } |
| |
| ACTION_TEMPLATE(ReturnNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_3_VALUE_PARAMS(p0, p1, p2)) { |
| return new T(p0, p1, p2); |
| } |
| |
| ACTION_TEMPLATE(ReturnNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_4_VALUE_PARAMS(p0, p1, p2, p3)) { |
| return new T(p0, p1, p2, p3); |
| } |
| |
| ACTION_TEMPLATE(ReturnNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) { |
| return new T(p0, p1, p2, p3, p4); |
| } |
| |
| ACTION_TEMPLATE(ReturnNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) { |
| return new T(p0, p1, p2, p3, p4, p5); |
| } |
| |
| ACTION_TEMPLATE(ReturnNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) { |
| return new T(p0, p1, p2, p3, p4, p5, p6); |
| } |
| |
| ACTION_TEMPLATE(ReturnNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) { |
| return new T(p0, p1, p2, p3, p4, p5, p6, p7); |
| } |
| |
| ACTION_TEMPLATE(ReturnNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) { |
| return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8); |
| } |
| |
| ACTION_TEMPLATE(ReturnNew, |
| HAS_1_TEMPLATE_PARAMS(typename, T), |
| AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) { |
| return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9); |
| } |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) |
| #endif |
| |
| } // namespace testing |
| |
| #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ |
| // This file was GENERATED by command: |
| // pump.py gmock-generated-function-mockers.h.pump |
| // DO NOT EDIT BY HAND!!! |
| |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements function mockers of various arities. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_ |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_ |
| |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements the ON_CALL() and EXPECT_CALL() macros. |
| // |
| // A user can use the ON_CALL() macro to specify the default action of |
| // a mock method. The syntax is: |
| // |
| // ON_CALL(mock_object, Method(argument-matchers)) |
| // .With(multi-argument-matcher) |
| // .WillByDefault(action); |
| // |
| // where the .With() clause is optional. |
| // |
| // A user can use the EXPECT_CALL() macro to specify an expectation on |
| // a mock method. The syntax is: |
| // |
| // EXPECT_CALL(mock_object, Method(argument-matchers)) |
| // .With(multi-argument-matchers) |
| // .Times(cardinality) |
| // .InSequence(sequences) |
| // .After(expectations) |
| // .WillOnce(action) |
| // .WillRepeatedly(action) |
| // .RetiresOnSaturation(); |
| // |
| // where all clauses are optional, and .InSequence()/.After()/ |
| // .WillOnce() can appear any number of times. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ |
| |
| #include <map> |
| #include <set> |
| #include <sstream> |
| #include <string> |
| #include <vector> |
| |
| #if GTEST_HAS_EXCEPTIONS |
| # include <stdexcept> // NOLINT |
| #endif |
| |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements some commonly used argument matchers. More |
| // matchers can be defined by the user implementing the |
| // MatcherInterface<T> interface if necessary. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| |
| #include <math.h> |
| #include <algorithm> |
| #include <iterator> |
| #include <limits> |
| #include <ostream> // NOLINT |
| #include <sstream> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| |
| #if GTEST_HAS_STD_INITIALIZER_LIST_ |
| # include <initializer_list> // NOLINT -- must be after gtest.h |
| #endif |
| |
| namespace testing { |
| |
| // To implement a matcher Foo for type T, define: |
| // 1. a class FooMatcherImpl that implements the |
| // MatcherInterface<T> interface, and |
| // 2. a factory function that creates a Matcher<T> object from a |
| // FooMatcherImpl*. |
| // |
| // The two-level delegation design makes it possible to allow a user |
| // to write "v" instead of "Eq(v)" where a Matcher is expected, which |
| // is impossible if we pass matchers by pointers. It also eases |
| // ownership management as Matcher objects can now be copied like |
| // plain values. |
| |
| // MatchResultListener is an abstract class. Its << operator can be |
| // used by a matcher to explain why a value matches or doesn't match. |
| // |
| // TODO(wan@google.com): add method |
| // bool InterestedInWhy(bool result) const; |
| // to indicate whether the listener is interested in why the match |
| // result is 'result'. |
| class MatchResultListener { |
| public: |
| // Creates a listener object with the given underlying ostream. The |
| // listener does not own the ostream, and does not dereference it |
| // in the constructor or destructor. |
| explicit MatchResultListener(::std::ostream* os) : stream_(os) {} |
| virtual ~MatchResultListener() = 0; // Makes this class abstract. |
| |
| // Streams x to the underlying ostream; does nothing if the ostream |
| // is NULL. |
| template <typename T> |
| MatchResultListener& operator<<(const T& x) { |
| if (stream_ != NULL) |
| *stream_ << x; |
| return *this; |
| } |
| |
| // Returns the underlying ostream. |
| ::std::ostream* stream() { return stream_; } |
| |
| // Returns true iff the listener is interested in an explanation of |
| // the match result. A matcher's MatchAndExplain() method can use |
| // this information to avoid generating the explanation when no one |
| // intends to hear it. |
| bool IsInterested() const { return stream_ != NULL; } |
| |
| private: |
| ::std::ostream* const stream_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener); |
| }; |
| |
| inline MatchResultListener::~MatchResultListener() { |
| } |
| |
| // An instance of a subclass of this knows how to describe itself as a |
| // matcher. |
| class MatcherDescriberInterface { |
| public: |
| virtual ~MatcherDescriberInterface() {} |
| |
| // Describes this matcher to an ostream. The function should print |
| // a verb phrase that describes the property a value matching this |
| // matcher should have. The subject of the verb phrase is the value |
| // being matched. For example, the DescribeTo() method of the Gt(7) |
| // matcher prints "is greater than 7". |
| virtual void DescribeTo(::std::ostream* os) const = 0; |
| |
| // Describes the negation of this matcher to an ostream. For |
| // example, if the description of this matcher is "is greater than |
| // 7", the negated description could be "is not greater than 7". |
| // You are not required to override this when implementing |
| // MatcherInterface, but it is highly advised so that your matcher |
| // can produce good error messages. |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "not ("; |
| DescribeTo(os); |
| *os << ")"; |
| } |
| }; |
| |
| // The implementation of a matcher. |
| template <typename T> |
| class MatcherInterface : public MatcherDescriberInterface { |
| public: |
| // Returns true iff the matcher matches x; also explains the match |
| // result to 'listener' if necessary (see the next paragraph), in |
| // the form of a non-restrictive relative clause ("which ...", |
| // "whose ...", etc) that describes x. For example, the |
| // MatchAndExplain() method of the Pointee(...) matcher should |
| // generate an explanation like "which points to ...". |
| // |
| // Implementations of MatchAndExplain() should add an explanation of |
| // the match result *if and only if* they can provide additional |
| // information that's not already present (or not obvious) in the |
| // print-out of x and the matcher's description. Whether the match |
| // succeeds is not a factor in deciding whether an explanation is |
| // needed, as sometimes the caller needs to print a failure message |
| // when the match succeeds (e.g. when the matcher is used inside |
| // Not()). |
| // |
| // For example, a "has at least 10 elements" matcher should explain |
| // what the actual element count is, regardless of the match result, |
| // as it is useful information to the reader; on the other hand, an |
| // "is empty" matcher probably only needs to explain what the actual |
| // size is when the match fails, as it's redundant to say that the |
| // size is 0 when the value is already known to be empty. |
| // |
| // You should override this method when defining a new matcher. |
| // |
| // It's the responsibility of the caller (Google Mock) to guarantee |
| // that 'listener' is not NULL. This helps to simplify a matcher's |
| // implementation when it doesn't care about the performance, as it |
| // can talk to 'listener' without checking its validity first. |
| // However, in order to implement dummy listeners efficiently, |
| // listener->stream() may be NULL. |
| virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0; |
| |
| // Inherits these methods from MatcherDescriberInterface: |
| // virtual void DescribeTo(::std::ostream* os) const = 0; |
| // virtual void DescribeNegationTo(::std::ostream* os) const; |
| }; |
| |
| // A match result listener that stores the explanation in a string. |
| class StringMatchResultListener : public MatchResultListener { |
| public: |
| StringMatchResultListener() : MatchResultListener(&ss_) {} |
| |
| // Returns the explanation accumulated so far. |
| internal::string str() const { return ss_.str(); } |
| |
| // Clears the explanation accumulated so far. |
| void Clear() { ss_.str(""); } |
| |
| private: |
| ::std::stringstream ss_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); |
| }; |
| |
| namespace internal { |
| |
| // A match result listener that ignores the explanation. |
| class DummyMatchResultListener : public MatchResultListener { |
| public: |
| DummyMatchResultListener() : MatchResultListener(NULL) {} |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener); |
| }; |
| |
| // A match result listener that forwards the explanation to a given |
| // ostream. The difference between this and MatchResultListener is |
| // that the former is concrete. |
| class StreamMatchResultListener : public MatchResultListener { |
| public: |
| explicit StreamMatchResultListener(::std::ostream* os) |
| : MatchResultListener(os) {} |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener); |
| }; |
| |
| // An internal class for implementing Matcher<T>, which will derive |
| // from it. We put functionalities common to all Matcher<T> |
| // specializations here to avoid code duplication. |
| template <typename T> |
| class MatcherBase { |
| public: |
| // Returns true iff the matcher matches x; also explains the match |
| // result to 'listener'. |
| bool MatchAndExplain(T x, MatchResultListener* listener) const { |
| return impl_->MatchAndExplain(x, listener); |
| } |
| |
| // Returns true iff this matcher matches x. |
| bool Matches(T x) const { |
| DummyMatchResultListener dummy; |
| return MatchAndExplain(x, &dummy); |
| } |
| |
| // Describes this matcher to an ostream. |
| void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } |
| |
| // Describes the negation of this matcher to an ostream. |
| void DescribeNegationTo(::std::ostream* os) const { |
| impl_->DescribeNegationTo(os); |
| } |
| |
| // Explains why x matches, or doesn't match, the matcher. |
| void ExplainMatchResultTo(T x, ::std::ostream* os) const { |
| StreamMatchResultListener listener(os); |
| MatchAndExplain(x, &listener); |
| } |
| |
| // Returns the describer for this matcher object; retains ownership |
| // of the describer, which is only guaranteed to be alive when |
| // this matcher object is alive. |
| const MatcherDescriberInterface* GetDescriber() const { |
| return impl_.get(); |
| } |
| |
| protected: |
| MatcherBase() {} |
| |
| // Constructs a matcher from its implementation. |
| explicit MatcherBase(const MatcherInterface<T>* impl) |
| : impl_(impl) {} |
| |
| virtual ~MatcherBase() {} |
| |
| private: |
| // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar |
| // interfaces. The former dynamically allocates a chunk of memory |
| // to hold the reference count, while the latter tracks all |
| // references using a circular linked list without allocating |
| // memory. It has been observed that linked_ptr performs better in |
| // typical scenarios. However, shared_ptr can out-perform |
| // linked_ptr when there are many more uses of the copy constructor |
| // than the default constructor. |
| // |
| // If performance becomes a problem, we should see if using |
| // shared_ptr helps. |
| ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_; |
| }; |
| |
| } // namespace internal |
| |
| // A Matcher<T> is a copyable and IMMUTABLE (except by assignment) |
| // object that can check whether a value of type T matches. The |
| // implementation of Matcher<T> is just a linked_ptr to const |
| // MatcherInterface<T>, so copying is fairly cheap. Don't inherit |
| // from Matcher! |
| template <typename T> |
| class Matcher : public internal::MatcherBase<T> { |
| public: |
| // Constructs a null matcher. Needed for storing Matcher objects in STL |
| // containers. A default-constructed matcher is not yet initialized. You |
| // cannot use it until a valid value has been assigned to it. |
| Matcher() {} |
| |
| // Constructs a matcher from its implementation. |
| explicit Matcher(const MatcherInterface<T>* impl) |
| : internal::MatcherBase<T>(impl) {} |
| |
| // Implicit constructor here allows people to write |
| // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes |
| Matcher(T value); // NOLINT |
| }; |
| |
| // The following two specializations allow the user to write str |
| // instead of Eq(str) and "foo" instead of Eq("foo") when a string |
| // matcher is expected. |
| template <> |
| class GTEST_API_ Matcher<const internal::string&> |
| : public internal::MatcherBase<const internal::string&> { |
| public: |
| Matcher() {} |
| |
| explicit Matcher(const MatcherInterface<const internal::string&>* impl) |
| : internal::MatcherBase<const internal::string&>(impl) {} |
| |
| // Allows the user to write str instead of Eq(str) sometimes, where |
| // str is a string object. |
| Matcher(const internal::string& s); // NOLINT |
| |
| // Allows the user to write "foo" instead of Eq("foo") sometimes. |
| Matcher(const char* s); // NOLINT |
| }; |
| |
| template <> |
| class GTEST_API_ Matcher<internal::string> |
| : public internal::MatcherBase<internal::string> { |
| public: |
| Matcher() {} |
| |
| explicit Matcher(const MatcherInterface<internal::string>* impl) |
| : internal::MatcherBase<internal::string>(impl) {} |
| |
| // Allows the user to write str instead of Eq(str) sometimes, where |
| // str is a string object. |
| Matcher(const internal::string& s); // NOLINT |
| |
| // Allows the user to write "foo" instead of Eq("foo") sometimes. |
| Matcher(const char* s); // NOLINT |
| }; |
| |
| #if GTEST_HAS_STRING_PIECE_ |
| // The following two specializations allow the user to write str |
| // instead of Eq(str) and "foo" instead of Eq("foo") when a StringPiece |
| // matcher is expected. |
| template <> |
| class GTEST_API_ Matcher<const StringPiece&> |
| : public internal::MatcherBase<const StringPiece&> { |
| public: |
| Matcher() {} |
| |
| explicit Matcher(const MatcherInterface<const StringPiece&>* impl) |
| : internal::MatcherBase<const StringPiece&>(impl) {} |
| |
| // Allows the user to write str instead of Eq(str) sometimes, where |
| // str is a string object. |
| Matcher(const internal::string& s); // NOLINT |
| |
| // Allows the user to write "foo" instead of Eq("foo") sometimes. |
| Matcher(const char* s); // NOLINT |
| |
| // Allows the user to pass StringPieces directly. |
| Matcher(StringPiece s); // NOLINT |
| }; |
| |
| template <> |
| class GTEST_API_ Matcher<StringPiece> |
| : public internal::MatcherBase<StringPiece> { |
| public: |
| Matcher() {} |
| |
| explicit Matcher(const MatcherInterface<StringPiece>* impl) |
| : internal::MatcherBase<StringPiece>(impl) {} |
| |
| // Allows the user to write str instead of Eq(str) sometimes, where |
| // str is a string object. |
| Matcher(const internal::string& s); // NOLINT |
| |
| // Allows the user to write "foo" instead of Eq("foo") sometimes. |
| Matcher(const char* s); // NOLINT |
| |
| // Allows the user to pass StringPieces directly. |
| Matcher(StringPiece s); // NOLINT |
| }; |
| #endif // GTEST_HAS_STRING_PIECE_ |
| |
| // The PolymorphicMatcher class template makes it easy to implement a |
| // polymorphic matcher (i.e. a matcher that can match values of more |
| // than one type, e.g. Eq(n) and NotNull()). |
| // |
| // To define a polymorphic matcher, a user should provide an Impl |
| // class that has a DescribeTo() method and a DescribeNegationTo() |
| // method, and define a member function (or member function template) |
| // |
| // bool MatchAndExplain(const Value& value, |
| // MatchResultListener* listener) const; |
| // |
| // See the definition of NotNull() for a complete example. |
| template <class Impl> |
| class PolymorphicMatcher { |
| public: |
| explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {} |
| |
| // Returns a mutable reference to the underlying matcher |
| // implementation object. |
| Impl& mutable_impl() { return impl_; } |
| |
| // Returns an immutable reference to the underlying matcher |
| // implementation object. |
| const Impl& impl() const { return impl_; } |
| |
| template <typename T> |
| operator Matcher<T>() const { |
| return Matcher<T>(new MonomorphicImpl<T>(impl_)); |
| } |
| |
| private: |
| template <typename T> |
| class MonomorphicImpl : public MatcherInterface<T> { |
| public: |
| explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| impl_.DescribeTo(os); |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| impl_.DescribeNegationTo(os); |
| } |
| |
| virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { |
| return impl_.MatchAndExplain(x, listener); |
| } |
| |
| private: |
| const Impl impl_; |
| |
| GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); |
| }; |
| |
| Impl impl_; |
| |
| GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher); |
| }; |
| |
| // Creates a matcher from its implementation. This is easier to use |
| // than the Matcher<T> constructor as it doesn't require you to |
| // explicitly write the template argument, e.g. |
| // |
| // MakeMatcher(foo); |
| // vs |
| // Matcher<const string&>(foo); |
| template <typename T> |
| inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) { |
| return Matcher<T>(impl); |
| } |
| |
| // Creates a polymorphic matcher from its implementation. This is |
| // easier to use than the PolymorphicMatcher<Impl> constructor as it |
| // doesn't require you to explicitly write the template argument, e.g. |
| // |
| // MakePolymorphicMatcher(foo); |
| // vs |
| // PolymorphicMatcher<TypeOfFoo>(foo); |
| template <class Impl> |
| inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) { |
| return PolymorphicMatcher<Impl>(impl); |
| } |
| |
| // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
| // and MUST NOT BE USED IN USER CODE!!! |
| namespace internal { |
| |
| // The MatcherCastImpl class template is a helper for implementing |
| // MatcherCast(). We need this helper in order to partially |
| // specialize the implementation of MatcherCast() (C++ allows |
| // class/struct templates to be partially specialized, but not |
| // function templates.). |
| |
| // This general version is used when MatcherCast()'s argument is a |
| // polymorphic matcher (i.e. something that can be converted to a |
| // Matcher but is not one yet; for example, Eq(value)) or a value (for |
| // example, "hello"). |
| template <typename T, typename M> |
| class MatcherCastImpl { |
| public: |
| static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
| // M can be a polymorhic matcher, in which case we want to use |
| // its conversion operator to create Matcher<T>. Or it can be a value |
| // that should be passed to the Matcher<T>'s constructor. |
| // |
| // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a |
| // polymorphic matcher because it'll be ambiguous if T has an implicit |
| // constructor from M (this usually happens when T has an implicit |
| // constructor from any type). |
| // |
| // It won't work to unconditionally implict_cast |
| // polymorphic_matcher_or_value to Matcher<T> because it won't trigger |
| // a user-defined conversion from M to T if one exists (assuming M is |
| // a value). |
| return CastImpl( |
| polymorphic_matcher_or_value, |
| BooleanConstant< |
| internal::ImplicitlyConvertible<M, Matcher<T> >::value>()); |
| } |
| |
| private: |
| static Matcher<T> CastImpl(const M& value, BooleanConstant<false>) { |
| // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic |
| // matcher. It must be a value then. Use direct initialization to create |
| // a matcher. |
| return Matcher<T>(ImplicitCast_<T>(value)); |
| } |
| |
| static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, |
| BooleanConstant<true>) { |
| // M is implicitly convertible to Matcher<T>, which means that either |
| // M is a polymorhpic matcher or Matcher<T> has an implicit constructor |
| // from M. In both cases using the implicit conversion will produce a |
| // matcher. |
| // |
| // Even if T has an implicit constructor from M, it won't be called because |
| // creating Matcher<T> would require a chain of two user-defined conversions |
| // (first to create T from M and then to create Matcher<T> from T). |
| return polymorphic_matcher_or_value; |
| } |
| }; |
| |
| // This more specialized version is used when MatcherCast()'s argument |
| // is already a Matcher. This only compiles when type T can be |
| // statically converted to type U. |
| template <typename T, typename U> |
| class MatcherCastImpl<T, Matcher<U> > { |
| public: |
| static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
| return Matcher<T>(new Impl(source_matcher)); |
| } |
| |
| private: |
| class Impl : public MatcherInterface<T> { |
| public: |
| explicit Impl(const Matcher<U>& source_matcher) |
| : source_matcher_(source_matcher) {} |
| |
| // We delegate the matching logic to the source matcher. |
| virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { |
| return source_matcher_.MatchAndExplain(static_cast<U>(x), listener); |
| } |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| source_matcher_.DescribeTo(os); |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| source_matcher_.DescribeNegationTo(os); |
| } |
| |
| private: |
| const Matcher<U> source_matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(Impl); |
| }; |
| }; |
| |
| // This even more specialized version is used for efficiently casting |
| // a matcher to its own type. |
| template <typename T> |
| class MatcherCastImpl<T, Matcher<T> > { |
| public: |
| static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
| }; |
| |
| } // namespace internal |
| |
| // In order to be safe and clear, casting between different matcher |
| // types is done explicitly via MatcherCast<T>(m), which takes a |
| // matcher m and returns a Matcher<T>. It compiles only when T can be |
| // statically converted to the argument type of m. |
| template <typename T, typename M> |
| inline Matcher<T> MatcherCast(const M& matcher) { |
| return internal::MatcherCastImpl<T, M>::Cast(matcher); |
| } |
| |
| // Implements SafeMatcherCast(). |
| // |
| // We use an intermediate class to do the actual safe casting as Nokia's |
| // Symbian compiler cannot decide between |
| // template <T, M> ... (M) and |
| // template <T, U> ... (const Matcher<U>&) |
| // for function templates but can for member function templates. |
| template <typename T> |
| class SafeMatcherCastImpl { |
| public: |
| // This overload handles polymorphic matchers and values only since |
| // monomorphic matchers are handled by the next one. |
| template <typename M> |
| static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
| return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value); |
| } |
| |
| // This overload handles monomorphic matchers. |
| // |
| // In general, if type T can be implicitly converted to type U, we can |
| // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
| // contravariant): just keep a copy of the original Matcher<U>, convert the |
| // argument from type T to U, and then pass it to the underlying Matcher<U>. |
| // The only exception is when U is a reference and T is not, as the |
| // underlying Matcher<U> may be interested in the argument's address, which |
| // is not preserved in the conversion from T to U. |
| template <typename U> |
| static inline Matcher<T> Cast(const Matcher<U>& matcher) { |
| // Enforce that T can be implicitly converted to U. |
| GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value), |
| T_must_be_implicitly_convertible_to_U); |
| // Enforce that we are not converting a non-reference type T to a reference |
| // type U. |
| GTEST_COMPILE_ASSERT_( |
| internal::is_reference<T>::value || !internal::is_reference<U>::value, |
| cannot_convert_non_referentce_arg_to_reference); |
| // In case both T and U are arithmetic types, enforce that the |
| // conversion is not lossy. |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; |
| const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
| const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
| GTEST_COMPILE_ASSERT_( |
| kTIsOther || kUIsOther || |
| (internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
| conversion_of_arithmetic_types_must_be_lossless); |
| return MatcherCast<T>(matcher); |
| } |
| }; |
| |
| template <typename T, typename M> |
| inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) { |
| return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher); |
| } |
| |
| // A<T>() returns a matcher that matches any value of type T. |
| template <typename T> |
| Matcher<T> A(); |
| |
| // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
| // and MUST NOT BE USED IN USER CODE!!! |
| namespace internal { |
| |
| // If the explanation is not empty, prints it to the ostream. |
| inline void PrintIfNotEmpty(const internal::string& explanation, |
| ::std::ostream* os) { |
| if (explanation != "" && os != NULL) { |
| *os << ", " << explanation; |
| } |
| } |
| |
| // Returns true if the given type name is easy to read by a human. |
| // This is used to decide whether printing the type of a value might |
| // be helpful. |
| inline bool IsReadableTypeName(const string& type_name) { |
| // We consider a type name readable if it's short or doesn't contain |
| // a template or function type. |
| return (type_name.length() <= 20 || |
| type_name.find_first_of("<(") == string::npos); |
| } |
| |
| // Matches the value against the given matcher, prints the value and explains |
| // the match result to the listener. Returns the match result. |
| // 'listener' must not be NULL. |
| // Value cannot be passed by const reference, because some matchers take a |
| // non-const argument. |
| template <typename Value, typename T> |
| bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, |
| MatchResultListener* listener) { |
| if (!listener->IsInterested()) { |
| // If the listener is not interested, we do not need to construct the |
| // inner explanation. |
| return matcher.Matches(value); |
| } |
| |
| StringMatchResultListener inner_listener; |
| const bool match = matcher.MatchAndExplain(value, &inner_listener); |
| |
| UniversalPrint(value, listener->stream()); |
| #if GTEST_HAS_RTTI |
| const string& type_name = GetTypeName<Value>(); |
| if (IsReadableTypeName(type_name)) |
| *listener->stream() << " (of type " << type_name << ")"; |
| #endif |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| |
| return match; |
| } |
| |
| // An internal helper class for doing compile-time loop on a tuple's |
| // fields. |
| template <size_t N> |
| class TuplePrefix { |
| public: |
| // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
| // iff the first N fields of matcher_tuple matches the first N |
| // fields of value_tuple, respectively. |
| template <typename MatcherTuple, typename ValueTuple> |
| static bool Matches(const MatcherTuple& matcher_tuple, |
| const ValueTuple& value_tuple) { |
| using ::std::tr1::get; |
| return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) |
| && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple)); |
| } |
| |
| // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) |
| // describes failures in matching the first N fields of matchers |
| // against the first N fields of values. If there is no failure, |
| // nothing will be streamed to os. |
| template <typename MatcherTuple, typename ValueTuple> |
| static void ExplainMatchFailuresTo(const MatcherTuple& matchers, |
| const ValueTuple& values, |
| ::std::ostream* os) { |
| using ::std::tr1::tuple_element; |
| using ::std::tr1::get; |
| |
| // First, describes failures in the first N - 1 fields. |
| TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); |
| |
| // Then describes the failure (if any) in the (N - 1)-th (0-based) |
| // field. |
| typename tuple_element<N - 1, MatcherTuple>::type matcher = |
| get<N - 1>(matchers); |
| typedef typename tuple_element<N - 1, ValueTuple>::type Value; |
| Value value = get<N - 1>(values); |
| StringMatchResultListener listener; |
| if (!matcher.MatchAndExplain(value, &listener)) { |
| // TODO(wan): include in the message the name of the parameter |
| // as used in MOCK_METHOD*() when possible. |
| *os << " Expected arg #" << N - 1 << ": "; |
| get<N - 1>(matchers).DescribeTo(os); |
| *os << "\n Actual: "; |
| // We remove the reference in type Value to prevent the |
| // universal printer from printing the address of value, which |
| // isn't interesting to the user most of the time. The |
| // matcher's MatchAndExplain() method handles the case when |
| // the address is interesting. |
| internal::UniversalPrint(value, os); |
| PrintIfNotEmpty(listener.str(), os); |
| *os << "\n"; |
| } |
| } |
| }; |
| |
| // The base case. |
| template <> |
| class TuplePrefix<0> { |
| public: |
| template <typename MatcherTuple, typename ValueTuple> |
| static bool Matches(const MatcherTuple& /* matcher_tuple */, |
| const ValueTuple& /* value_tuple */) { |
| return true; |
| } |
| |
| template <typename MatcherTuple, typename ValueTuple> |
| static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, |
| const ValueTuple& /* values */, |
| ::std::ostream* /* os */) {} |
| }; |
| |
| // TupleMatches(matcher_tuple, value_tuple) returns true iff all |
| // matchers in matcher_tuple match the corresponding fields in |
| // value_tuple. It is a compiler error if matcher_tuple and |
| // value_tuple have different number of fields or incompatible field |
| // types. |
| template <typename MatcherTuple, typename ValueTuple> |
| bool TupleMatches(const MatcherTuple& matcher_tuple, |
| const ValueTuple& value_tuple) { |
| using ::std::tr1::tuple_size; |
| // Makes sure that matcher_tuple and value_tuple have the same |
| // number of fields. |
| GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value == |
| tuple_size<ValueTuple>::value, |
| matcher_and_value_have_different_numbers_of_fields); |
| return TuplePrefix<tuple_size<ValueTuple>::value>:: |
| Matches(matcher_tuple, value_tuple); |
| } |
| |
| // Describes failures in matching matchers against values. If there |
| // is no failure, nothing will be streamed to os. |
| template <typename MatcherTuple, typename ValueTuple> |
| void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, |
| const ValueTuple& values, |
| ::std::ostream* os) { |
| using ::std::tr1::tuple_size; |
| TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( |
| matchers, values, os); |
| } |
| |
| // TransformTupleValues and its helper. |
| // |
| // TransformTupleValuesHelper hides the internal machinery that |
| // TransformTupleValues uses to implement a tuple traversal. |
| template <typename Tuple, typename Func, typename OutIter> |
| class TransformTupleValuesHelper { |
| private: |
| typedef typename ::std::tr1::tuple_size<Tuple> TupleSize; |
| |
| public: |
| // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. |
| // Returns the final value of 'out' in case the caller needs it. |
| static OutIter Run(Func f, const Tuple& t, OutIter out) { |
| return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); |
| } |
| |
| private: |
| template <typename Tup, size_t kRemainingSize> |
| struct IterateOverTuple { |
| OutIter operator() (Func f, const Tup& t, OutIter out) const { |
| *out++ = f(::std::tr1::get<TupleSize::value - kRemainingSize>(t)); |
| return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); |
| } |
| }; |
| template <typename Tup> |
| struct IterateOverTuple<Tup, 0> { |
| OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { |
| return out; |
| } |
| }; |
| }; |
| |
| // Successively invokes 'f(element)' on each element of the tuple 't', |
| // appending each result to the 'out' iterator. Returns the final value |
| // of 'out'. |
| template <typename Tuple, typename Func, typename OutIter> |
| OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { |
| return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); |
| } |
| |
| // Implements A<T>(). |
| template <typename T> |
| class AnyMatcherImpl : public MatcherInterface<T> { |
| public: |
| virtual bool MatchAndExplain( |
| T /* x */, MatchResultListener* /* listener */) const { return true; } |
| virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; } |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| // This is mostly for completeness' safe, as it's not very useful |
| // to write Not(A<bool>()). However we cannot completely rule out |
| // such a possibility, and it doesn't hurt to be prepared. |
| *os << "never matches"; |
| } |
| }; |
| |
| // Implements _, a matcher that matches any value of any |
| // type. This is a polymorphic matcher, so we need a template type |
| // conversion operator to make it appearing as a Matcher<T> for any |
| // type T. |
| class AnythingMatcher { |
| public: |
| template <typename T> |
| operator Matcher<T>() const { return A<T>(); } |
| }; |
| |
| // Implements a matcher that compares a given value with a |
| // pre-supplied value using one of the ==, <=, <, etc, operators. The |
| // two values being compared don't have to have the same type. |
| // |
| // The matcher defined here is polymorphic (for example, Eq(5) can be |
| // used to match an int, a short, a double, etc). Therefore we use |
| // a template type conversion operator in the implementation. |
| // |
| // We define this as a macro in order to eliminate duplicated source |
| // code. |
| // |
| // The following template definition assumes that the Rhs parameter is |
| // a "bare" type (i.e. neither 'const T' nor 'T&'). |
| #define GMOCK_IMPLEMENT_COMPARISON_MATCHER_( \ |
| name, op, relation, negated_relation) \ |
| template <typename Rhs> class name##Matcher { \ |
| public: \ |
| explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \ |
| template <typename Lhs> \ |
| operator Matcher<Lhs>() const { \ |
| return MakeMatcher(new Impl<Lhs>(rhs_)); \ |
| } \ |
| private: \ |
| template <typename Lhs> \ |
| class Impl : public MatcherInterface<Lhs> { \ |
| public: \ |
| explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \ |
| virtual bool MatchAndExplain(\ |
| Lhs lhs, MatchResultListener* /* listener */) const { \ |
| return lhs op rhs_; \ |
| } \ |
| virtual void DescribeTo(::std::ostream* os) const { \ |
| *os << relation " "; \ |
| UniversalPrint(rhs_, os); \ |
| } \ |
| virtual void DescribeNegationTo(::std::ostream* os) const { \ |
| *os << negated_relation " "; \ |
| UniversalPrint(rhs_, os); \ |
| } \ |
| private: \ |
| Rhs rhs_; \ |
| GTEST_DISALLOW_ASSIGN_(Impl); \ |
| }; \ |
| Rhs rhs_; \ |
| GTEST_DISALLOW_ASSIGN_(name##Matcher); \ |
| } |
| |
| // Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v) |
| // respectively. |
| GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "is equal to", "isn't equal to"); |
| GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "is >=", "isn't >="); |
| GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "is >", "isn't >"); |
| GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "is <=", "isn't <="); |
| GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "is <", "isn't <"); |
| GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "isn't equal to", "is equal to"); |
| |
| #undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_ |
| |
| // Implements the polymorphic IsNull() matcher, which matches any raw or smart |
| // pointer that is NULL. |
| class IsNullMatcher { |
| public: |
| template <typename Pointer> |
| bool MatchAndExplain(const Pointer& p, |
| MatchResultListener* /* listener */) const { |
| return GetRawPointer(p) == NULL; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "isn't NULL"; |
| } |
| }; |
| |
| // Implements the polymorphic NotNull() matcher, which matches any raw or smart |
| // pointer that is not NULL. |
| class NotNullMatcher { |
| public: |
| template <typename Pointer> |
| bool MatchAndExplain(const Pointer& p, |
| MatchResultListener* /* listener */) const { |
| return GetRawPointer(p) != NULL; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "is NULL"; |
| } |
| }; |
| |
| // Ref(variable) matches any argument that is a reference to |
| // 'variable'. This matcher is polymorphic as it can match any |
| // super type of the type of 'variable'. |
| // |
| // The RefMatcher template class implements Ref(variable). It can |
| // only be instantiated with a reference type. This prevents a user |
| // from mistakenly using Ref(x) to match a non-reference function |
| // argument. For example, the following will righteously cause a |
| // compiler error: |
| // |
| // int n; |
| // Matcher<int> m1 = Ref(n); // This won't compile. |
| // Matcher<int&> m2 = Ref(n); // This will compile. |
| template <typename T> |
| class RefMatcher; |
| |
| template <typename T> |
| class RefMatcher<T&> { |
| // Google Mock is a generic framework and thus needs to support |
| // mocking any function types, including those that take non-const |
| // reference arguments. Therefore the template parameter T (and |
| // Super below) can be instantiated to either a const type or a |
| // non-const type. |
| public: |
| // RefMatcher() takes a T& instead of const T&, as we want the |
| // compiler to catch using Ref(const_value) as a matcher for a |
| // non-const reference. |
| explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
| |
| template <typename Super> |
| operator Matcher<Super&>() const { |
| // By passing object_ (type T&) to Impl(), which expects a Super&, |
| // we make sure that Super is a super type of T. In particular, |
| // this catches using Ref(const_value) as a matcher for a |
| // non-const reference, as you cannot implicitly convert a const |
| // reference to a non-const reference. |
| return MakeMatcher(new Impl<Super>(object_)); |
| } |
| |
| private: |
| template <typename Super> |
| class Impl : public MatcherInterface<Super&> { |
| public: |
| explicit Impl(Super& x) : object_(x) {} // NOLINT |
| |
| // MatchAndExplain() takes a Super& (as opposed to const Super&) |
| // in order to match the interface MatcherInterface<Super&>. |
| virtual bool MatchAndExplain( |
| Super& x, MatchResultListener* listener) const { |
| *listener << "which is located @" << static_cast<const void*>(&x); |
| return &x == &object_; |
| } |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "references the variable "; |
| UniversalPrinter<Super&>::Print(object_, os); |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "does not reference the variable "; |
| UniversalPrinter<Super&>::Print(object_, os); |
| } |
| |
| private: |
| const Super& object_; |
| |
| GTEST_DISALLOW_ASSIGN_(Impl); |
| }; |
| |
| T& object_; |
| |
| GTEST_DISALLOW_ASSIGN_(RefMatcher); |
| }; |
| |
| // Polymorphic helper functions for narrow and wide string matchers. |
| inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
| return String::CaseInsensitiveCStringEquals(lhs, rhs); |
| } |
| |
| inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
| const wchar_t* rhs) { |
| return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
| } |
| |
| // String comparison for narrow or wide strings that can have embedded NUL |
| // characters. |
| template <typename StringType> |
| bool CaseInsensitiveStringEquals(const StringType& s1, |
| const StringType& s2) { |
| // Are the heads equal? |
| if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
| return false; |
| } |
| |
| // Skip the equal heads. |
| const typename StringType::value_type nul = 0; |
| const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
| |
| // Are we at the end of either s1 or s2? |
| if (i1 == StringType::npos || i2 == StringType::npos) { |
| return i1 == i2; |
| } |
| |
| // Are the tails equal? |
| return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
| } |
| |
| // String matchers. |
| |
| // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
| template <typename StringType> |
| class StrEqualityMatcher { |
| public: |
| StrEqualityMatcher(const StringType& str, bool expect_eq, |
| bool case_sensitive) |
| : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| if (s == NULL) { |
| return !expect_eq_; |
| } |
| return MatchAndExplain(StringType(s), listener); |
| } |
| |
| // Matches anything that can convert to StringType. |
| // |
| // This is a template, not just a plain function with const StringType&, |
| // because StringPiece has some interfering non-explicit constructors. |
| template <typename MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| const StringType& s2(s); |
| const bool eq = case_sensitive_ ? s2 == string_ : |
| CaseInsensitiveStringEquals(s2, string_); |
| return expect_eq_ == eq; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| DescribeToHelper(expect_eq_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| DescribeToHelper(!expect_eq_, os); |
| } |
| |
| private: |
| void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
| *os << (expect_eq ? "is " : "isn't "); |
| *os << "equal to "; |
| if (!case_sensitive_) { |
| *os << "(ignoring case) "; |
| } |
| UniversalPrint(string_, os); |
| } |
| |
| const StringType string_; |
| const bool expect_eq_; |
| const bool case_sensitive_; |
| |
| GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); |
| }; |
| |
| // Implements the polymorphic HasSubstr(substring) matcher, which |
| // can be used as a Matcher<T> as long as T can be converted to a |
| // string. |
| template <typename StringType> |
| class HasSubstrMatcher { |
| public: |
| explicit HasSubstrMatcher(const StringType& substring) |
| : substring_(substring) {} |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| return s != NULL && MatchAndExplain(StringType(s), listener); |
| } |
| |
| // Matches anything that can convert to StringType. |
| // |
| // This is a template, not just a plain function with const StringType&, |
| // because StringPiece has some interfering non-explicit constructors. |
| template <typename MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| const StringType& s2(s); |
| return s2.find(substring_) != StringType::npos; |
| } |
| |
| // Describes what this matcher matches. |
| void DescribeTo(::std::ostream* os) const { |
| *os << "has substring "; |
| UniversalPrint(substring_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "has no substring "; |
| UniversalPrint(substring_, os); |
| } |
| |
| private: |
| const StringType substring_; |
| |
| GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); |
| }; |
| |
| // Implements the polymorphic StartsWith(substring) matcher, which |
| // can be used as a Matcher<T> as long as T can be converted to a |
| // string. |
| template <typename StringType> |
| class StartsWithMatcher { |
| public: |
| explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { |
| } |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| return s != NULL && MatchAndExplain(StringType(s), listener); |
| } |
| |
| // Matches anything that can convert to StringType. |
| // |
| // This is a template, not just a plain function with const StringType&, |
| // because StringPiece has some interfering non-explicit constructors. |
| template <typename MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| const StringType& s2(s); |
| return s2.length() >= prefix_.length() && |
| s2.substr(0, prefix_.length()) == prefix_; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "starts with "; |
| UniversalPrint(prefix_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't start with "; |
| UniversalPrint(prefix_, os); |
| } |
| |
| private: |
| const StringType prefix_; |
| |
| GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); |
| }; |
| |
| // Implements the polymorphic EndsWith(substring) matcher, which |
| // can be used as a Matcher<T> as long as T can be converted to a |
| // string. |
| template <typename StringType> |
| class EndsWithMatcher { |
| public: |
| explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| return s != NULL && MatchAndExplain(StringType(s), listener); |
| } |
| |
| // Matches anything that can convert to StringType. |
| // |
| // This is a template, not just a plain function with const StringType&, |
| // because StringPiece has some interfering non-explicit constructors. |
| template <typename MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| const StringType& s2(s); |
| return s2.length() >= suffix_.length() && |
| s2.substr(s2.length() - suffix_.length()) == suffix_; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "ends with "; |
| UniversalPrint(suffix_, os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't end with "; |
| UniversalPrint(suffix_, os); |
| } |
| |
| private: |
| const StringType suffix_; |
| |
| GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); |
| }; |
| |
| // Implements polymorphic matchers MatchesRegex(regex) and |
| // ContainsRegex(regex), which can be used as a Matcher<T> as long as |
| // T can be converted to a string. |
| class MatchesRegexMatcher { |
| public: |
| MatchesRegexMatcher(const RE* regex, bool full_match) |
| : regex_(regex), full_match_(full_match) {} |
| |
| // Accepts pointer types, particularly: |
| // const char* |
| // char* |
| // const wchar_t* |
| // wchar_t* |
| template <typename CharType> |
| bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| return s != NULL && MatchAndExplain(internal::string(s), listener); |
| } |
| |
| // Matches anything that can convert to internal::string. |
| // |
| // This is a template, not just a plain function with const internal::string&, |
| // because StringPiece has some interfering non-explicit constructors. |
| template <class MatcheeStringType> |
| bool MatchAndExplain(const MatcheeStringType& s, |
| MatchResultListener* /* listener */) const { |
| const internal::string& s2(s); |
| return full_match_ ? RE::FullMatch(s2, *regex_) : |
| RE::PartialMatch(s2, *regex_); |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << (full_match_ ? "matches" : "contains") |
| << " regular expression "; |
| UniversalPrinter<internal::string>::Print(regex_->pattern(), os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't " << (full_match_ ? "match" : "contain") |
| << " regular expression "; |
| UniversalPrinter<internal::string>::Print(regex_->pattern(), os); |
| } |
| |
| private: |
| const internal::linked_ptr<const RE> regex_; |
| const bool full_match_; |
| |
| GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher); |
| }; |
| |
| // Implements a matcher that compares the two fields of a 2-tuple |
| // using one of the ==, <=, <, etc, operators. The two fields being |
| // compared don't have to have the same type. |
| // |
| // The matcher defined here is polymorphic (for example, Eq() can be |
| // used to match a tuple<int, short>, a tuple<const long&, double>, |
| // etc). Therefore we use a template type conversion operator in the |
| // implementation. |
| // |
| // We define this as a macro in order to eliminate duplicated source |
| // code. |
| #define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op, relation) \ |
| class name##2Matcher { \ |
| public: \ |
| template <typename T1, typename T2> \ |
| operator Matcher< ::std::tr1::tuple<T1, T2> >() const { \ |
| return MakeMatcher(new Impl< ::std::tr1::tuple<T1, T2> >); \ |
| } \ |
| template <typename T1, typename T2> \ |
| operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \ |
| return MakeMatcher(new Impl<const ::std::tr1::tuple<T1, T2>&>); \ |
| } \ |
| private: \ |
| template <typename Tuple> \ |
| class Impl : public MatcherInterface<Tuple> { \ |
| public: \ |
| virtual bool MatchAndExplain( \ |
| Tuple args, \ |
| MatchResultListener* /* listener */) const { \ |
| return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \ |
| } \ |
| virtual void DescribeTo(::std::ostream* os) const { \ |
| *os << "are " relation; \ |
| } \ |
| virtual void DescribeNegationTo(::std::ostream* os) const { \ |
| *os << "aren't " relation; \ |
| } \ |
| }; \ |
| } |
| |
| // Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively. |
| GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==, "an equal pair"); |
| GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( |
| Ge, >=, "a pair where the first >= the second"); |
| GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( |
| Gt, >, "a pair where the first > the second"); |
| GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( |
| Le, <=, "a pair where the first <= the second"); |
| GMOCK_IMPLEMENT_COMPARISON2_MATCHER_( |
| Lt, <, "a pair where the first < the second"); |
| GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=, "an unequal pair"); |
| |
| #undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_ |
| |
| // Implements the Not(...) matcher for a particular argument type T. |
| // We do not nest it inside the NotMatcher class template, as that |
| // will prevent different instantiations of NotMatcher from sharing |
| // the same NotMatcherImpl<T> class. |
| template <typename T> |
| class NotMatcherImpl : public MatcherInterface<T> { |
| public: |
| explicit NotMatcherImpl(const Matcher<T>& matcher) |
| : matcher_(matcher) {} |
| |
| virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { |
| return !matcher_.MatchAndExplain(x, listener); |
| } |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| matcher_.DescribeTo(os); |
| } |
| |
| private: |
| const Matcher<T> matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); |
| }; |
| |
| // Implements the Not(m) matcher, which matches a value that doesn't |
| // match matcher m. |
| template <typename InnerMatcher> |
| class NotMatcher { |
| public: |
| explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
| |
| // This template type conversion operator allows Not(m) to be used |
| // to match any type m can match. |
| template <typename T> |
| operator Matcher<T>() const { |
| return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
| } |
| |
| private: |
| InnerMatcher matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(NotMatcher); |
| }; |
| |
| // Implements the AllOf(m1, m2) matcher for a particular argument type |
| // T. We do not nest it inside the BothOfMatcher class template, as |
| // that will prevent different instantiations of BothOfMatcher from |
| // sharing the same BothOfMatcherImpl<T> class. |
| template <typename T> |
| class BothOfMatcherImpl : public MatcherInterface<T> { |
| public: |
| BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2) |
| : matcher1_(matcher1), matcher2_(matcher2) {} |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "("; |
| matcher1_.DescribeTo(os); |
| *os << ") and ("; |
| matcher2_.DescribeTo(os); |
| *os << ")"; |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "("; |
| matcher1_.DescribeNegationTo(os); |
| *os << ") or ("; |
| matcher2_.DescribeNegationTo(os); |
| *os << ")"; |
| } |
| |
| virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { |
| // If either matcher1_ or matcher2_ doesn't match x, we only need |
| // to explain why one of them fails. |
| StringMatchResultListener listener1; |
| if (!matcher1_.MatchAndExplain(x, &listener1)) { |
| *listener << listener1.str(); |
| return false; |
| } |
| |
| StringMatchResultListener listener2; |
| if (!matcher2_.MatchAndExplain(x, &listener2)) { |
| *listener << listener2.str(); |
| return false; |
| } |
| |
| // Otherwise we need to explain why *both* of them match. |
| const internal::string s1 = listener1.str(); |
| const internal::string s2 = listener2.str(); |
| |
| if (s1 == "") { |
| *listener << s2; |
| } else { |
| *listener << s1; |
| if (s2 != "") { |
| *listener << ", and " << s2; |
| } |
| } |
| return true; |
| } |
| |
| private: |
| const Matcher<T> matcher1_; |
| const Matcher<T> matcher2_; |
| |
| GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl); |
| }; |
| |
| #if GTEST_LANG_CXX11 |
| // MatcherList provides mechanisms for storing a variable number of matchers in |
| // a list structure (ListType) and creating a combining matcher from such a |
| // list. |
| // The template is defined recursively using the following template paramters: |
| // * kSize is the length of the MatcherList. |
| // * Head is the type of the first matcher of the list. |
| // * Tail denotes the types of the remaining matchers of the list. |
| template <int kSize, typename Head, typename... Tail> |
| struct MatcherList { |
| typedef MatcherList<kSize - 1, Tail...> MatcherListTail; |
| typedef ::std::pair<Head, typename MatcherListTail::ListType> ListType; |
| |
| // BuildList stores variadic type values in a nested pair structure. |
| // Example: |
| // MatcherList<3, int, string, float>::BuildList(5, "foo", 2.0) will return |
| // the corresponding result of type pair<int, pair<string, float>>. |
| static ListType BuildList(const Head& matcher, const Tail&... tail) { |
| return ListType(matcher, MatcherListTail::BuildList(tail...)); |
| } |
| |
| // CreateMatcher<T> creates a Matcher<T> from a given list of matchers (built |
| // by BuildList()). CombiningMatcher<T> is used to combine the matchers of the |
| // list. CombiningMatcher<T> must implement MatcherInterface<T> and have a |
| // constructor taking two Matcher<T>s as input. |
| template <typename T, template <typename /* T */> class CombiningMatcher> |
| static Matcher<T> CreateMatcher(const ListType& matchers) { |
| return Matcher<T>(new CombiningMatcher<T>( |
| SafeMatcherCast<T>(matchers.first), |
| MatcherListTail::template CreateMatcher<T, CombiningMatcher>( |
| matchers.second))); |
| } |
| }; |
| |
| // The following defines the base case for the recursive definition of |
| // MatcherList. |
| template <typename Matcher1, typename Matcher2> |
| struct MatcherList<2, Matcher1, Matcher2> { |
| typedef ::std::pair<Matcher1, Matcher2> ListType; |
| |
| static ListType BuildList(const Matcher1& matcher1, |
| const Matcher2& matcher2) { |
| return ::std::pair<Matcher1, Matcher2>(matcher1, matcher2); |
| } |
| |
| template <typename T, template <typename /* T */> class CombiningMatcher> |
| static Matcher<T> CreateMatcher(const ListType& matchers) { |
| return Matcher<T>(new CombiningMatcher<T>( |
| SafeMatcherCast<T>(matchers.first), |
| SafeMatcherCast<T>(matchers.second))); |
| } |
| }; |
| |
| // VariadicMatcher is used for the variadic implementation of |
| // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). |
| // CombiningMatcher<T> is used to recursively combine the provided matchers |
| // (of type Args...). |
| template <template <typename T> class CombiningMatcher, typename... Args> |
| class VariadicMatcher { |
| public: |
| VariadicMatcher(const Args&... matchers) // NOLINT |
| : matchers_(MatcherListType::BuildList(matchers...)) {} |
| |
| // This template type conversion operator allows an |
| // VariadicMatcher<Matcher1, Matcher2...> object to match any type that |
| // all of the provided matchers (Matcher1, Matcher2, ...) can match. |
| template <typename T> |
| operator Matcher<T>() const { |
| return MatcherListType::template CreateMatcher<T, CombiningMatcher>( |
| matchers_); |
| } |
| |
| private: |
| typedef MatcherList<sizeof...(Args), Args...> MatcherListType; |
| |
| const typename MatcherListType::ListType matchers_; |
| |
| GTEST_DISALLOW_ASSIGN_(VariadicMatcher); |
| }; |
| |
| template <typename... Args> |
| using AllOfMatcher = VariadicMatcher<BothOfMatcherImpl, Args...>; |
| |
| #endif // GTEST_LANG_CXX11 |
| |
| // Used for implementing the AllOf(m_1, ..., m_n) matcher, which |
| // matches a value that matches all of the matchers m_1, ..., and m_n. |
| template <typename Matcher1, typename Matcher2> |
| class BothOfMatcher { |
| public: |
| BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2) |
| : matcher1_(matcher1), matcher2_(matcher2) {} |
| |
| // This template type conversion operator allows a |
| // BothOfMatcher<Matcher1, Matcher2> object to match any type that |
| // both Matcher1 and Matcher2 can match. |
| template <typename T> |
| operator Matcher<T>() const { |
| return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_), |
| SafeMatcherCast<T>(matcher2_))); |
| } |
| |
| private: |
| Matcher1 matcher1_; |
| Matcher2 matcher2_; |
| |
| GTEST_DISALLOW_ASSIGN_(BothOfMatcher); |
| }; |
| |
| // Implements the AnyOf(m1, m2) matcher for a particular argument type |
| // T. We do not nest it inside the AnyOfMatcher class template, as |
| // that will prevent different instantiations of AnyOfMatcher from |
| // sharing the same EitherOfMatcherImpl<T> class. |
| template <typename T> |
| class EitherOfMatcherImpl : public MatcherInterface<T> { |
| public: |
| EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2) |
| : matcher1_(matcher1), matcher2_(matcher2) {} |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "("; |
| matcher1_.DescribeTo(os); |
| *os << ") or ("; |
| matcher2_.DescribeTo(os); |
| *os << ")"; |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "("; |
| matcher1_.DescribeNegationTo(os); |
| *os << ") and ("; |
| matcher2_.DescribeNegationTo(os); |
| *os << ")"; |
| } |
| |
| virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { |
| // If either matcher1_ or matcher2_ matches x, we just need to |
| // explain why *one* of them matches. |
| StringMatchResultListener listener1; |
| if (matcher1_.MatchAndExplain(x, &listener1)) { |
| *listener << listener1.str(); |
| return true; |
| } |
| |
| StringMatchResultListener listener2; |
| if (matcher2_.MatchAndExplain(x, &listener2)) { |
| *listener << listener2.str(); |
| return true; |
| } |
| |
| // Otherwise we need to explain why *both* of them fail. |
| const internal::string s1 = listener1.str(); |
| const internal::string s2 = listener2.str(); |
| |
| if (s1 == "") { |
| *listener << s2; |
| } else { |
| *listener << s1; |
| if (s2 != "") { |
| *listener << ", and " << s2; |
| } |
| } |
| return false; |
| } |
| |
| private: |
| const Matcher<T> matcher1_; |
| const Matcher<T> matcher2_; |
| |
| GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl); |
| }; |
| |
| #if GTEST_LANG_CXX11 |
| // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). |
| template <typename... Args> |
| using AnyOfMatcher = VariadicMatcher<EitherOfMatcherImpl, Args...>; |
| |
| #endif // GTEST_LANG_CXX11 |
| |
| // Used for implementing the AnyOf(m_1, ..., m_n) matcher, which |
| // matches a value that matches at least one of the matchers m_1, ..., |
| // and m_n. |
| template <typename Matcher1, typename Matcher2> |
| class EitherOfMatcher { |
| public: |
| EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2) |
| : matcher1_(matcher1), matcher2_(matcher2) {} |
| |
| // This template type conversion operator allows a |
| // EitherOfMatcher<Matcher1, Matcher2> object to match any type that |
| // both Matcher1 and Matcher2 can match. |
| template <typename T> |
| operator Matcher<T>() const { |
| return Matcher<T>(new EitherOfMatcherImpl<T>( |
| SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_))); |
| } |
| |
| private: |
| Matcher1 matcher1_; |
| Matcher2 matcher2_; |
| |
| GTEST_DISALLOW_ASSIGN_(EitherOfMatcher); |
| }; |
| |
| // Used for implementing Truly(pred), which turns a predicate into a |
| // matcher. |
| template <typename Predicate> |
| class TrulyMatcher { |
| public: |
| explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
| |
| // This method template allows Truly(pred) to be used as a matcher |
| // for type T where T is the argument type of predicate 'pred'. The |
| // argument is passed by reference as the predicate may be |
| // interested in the address of the argument. |
| template <typename T> |
| bool MatchAndExplain(T& x, // NOLINT |
| MatchResultListener* /* listener */) const { |
| // Without the if-statement, MSVC sometimes warns about converting |
| // a value to bool (warning 4800). |
| // |
| // We cannot write 'return !!predicate_(x);' as that doesn't work |
| // when predicate_(x) returns a class convertible to bool but |
| // having no operator!(). |
| if (predicate_(x)) |
| return true; |
| return false; |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "satisfies the given predicate"; |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't satisfy the given predicate"; |
| } |
| |
| private: |
| Predicate predicate_; |
| |
| GTEST_DISALLOW_ASSIGN_(TrulyMatcher); |
| }; |
| |
| // Used for implementing Matches(matcher), which turns a matcher into |
| // a predicate. |
| template <typename M> |
| class MatcherAsPredicate { |
| public: |
| explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
| |
| // This template operator() allows Matches(m) to be used as a |
| // predicate on type T where m is a matcher on type T. |
| // |
| // The argument x is passed by reference instead of by value, as |
| // some matcher may be interested in its address (e.g. as in |
| // Matches(Ref(n))(x)). |
| template <typename T> |
| bool operator()(const T& x) const { |
| // We let matcher_ commit to a particular type here instead of |
| // when the MatcherAsPredicate object was constructed. This |
| // allows us to write Matches(m) where m is a polymorphic matcher |
| // (e.g. Eq(5)). |
| // |
| // If we write Matcher<T>(matcher_).Matches(x) here, it won't |
| // compile when matcher_ has type Matcher<const T&>; if we write |
| // Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
| // when matcher_ has type Matcher<T>; if we just write |
| // matcher_.Matches(x), it won't compile when matcher_ is |
| // polymorphic, e.g. Eq(5). |
| // |
| // MatcherCast<const T&>() is necessary for making the code work |
| // in all of the above situations. |
| return MatcherCast<const T&>(matcher_).Matches(x); |
| } |
| |
| private: |
| M matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate); |
| }; |
| |
| // For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
| // argument M must be a type that can be converted to a matcher. |
| template <typename M> |
| class PredicateFormatterFromMatcher { |
| public: |
| explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {} |
| |
| // This template () operator allows a PredicateFormatterFromMatcher |
| // object to act as a predicate-formatter suitable for using with |
| // Google Test's EXPECT_PRED_FORMAT1() macro. |
| template <typename T> |
| AssertionResult operator()(const char* value_text, const T& x) const { |
| // We convert matcher_ to a Matcher<const T&> *now* instead of |
| // when the PredicateFormatterFromMatcher object was constructed, |
| // as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
| // know which type to instantiate it to until we actually see the |
| // type of x here. |
| // |
| // We write SafeMatcherCast<const T&>(matcher_) instead of |
| // Matcher<const T&>(matcher_), as the latter won't compile when |
| // matcher_ has type Matcher<T> (e.g. An<int>()). |
| // We don't write MatcherCast<const T&> either, as that allows |
| // potentially unsafe downcasting of the matcher argument. |
| const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); |
| StringMatchResultListener listener; |
| if (MatchPrintAndExplain(x, matcher, &listener)) |
| return AssertionSuccess(); |
| |
| ::std::stringstream ss; |
| ss << "Value of: " << value_text << "\n" |
| << "Expected: "; |
| matcher.DescribeTo(&ss); |
| ss << "\n Actual: " << listener.str(); |
| return AssertionFailure() << ss.str(); |
| } |
| |
| private: |
| const M matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher); |
| }; |
| |
| // A helper function for converting a matcher to a predicate-formatter |
| // without the user needing to explicitly write the type. This is |
| // used for implementing ASSERT_THAT() and EXPECT_THAT(). |
| template <typename M> |
| inline PredicateFormatterFromMatcher<M> |
| MakePredicateFormatterFromMatcher(const M& matcher) { |
| return PredicateFormatterFromMatcher<M>(matcher); |
| } |
| |
| // Implements the polymorphic floating point equality matcher, which matches |
| // two float values using ULP-based approximation or, optionally, a |
| // user-specified epsilon. The template is meant to be instantiated with |
| // FloatType being either float or double. |
| template <typename FloatType> |
| class FloatingEqMatcher { |
| public: |
| // Constructor for FloatingEqMatcher. |
| // The matcher's input will be compared with rhs. The matcher treats two |
| // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
| // equality comparisons between NANs will always return false. We specify a |
| // negative max_abs_error_ term to indicate that ULP-based approximation will |
| // be used for comparison. |
| FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) : |
| rhs_(rhs), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { |
| } |
| |
| // Constructor that supports a user-specified max_abs_error that will be used |
| // for comparison instead of ULP-based approximation. The max absolute |
| // should be non-negative. |
| FloatingEqMatcher(FloatType rhs, bool nan_eq_nan, FloatType max_abs_error) : |
| rhs_(rhs), nan_eq_nan_(nan_eq_nan), max_abs_error_(max_abs_error) { |
| GTEST_CHECK_(max_abs_error >= 0) |
| << ", where max_abs_error is" << max_abs_error; |
| } |
| |
| // Implements floating point equality matcher as a Matcher<T>. |
| template <typename T> |
| class Impl : public MatcherInterface<T> { |
| public: |
| Impl(FloatType rhs, bool nan_eq_nan, FloatType max_abs_error) : |
| rhs_(rhs), nan_eq_nan_(nan_eq_nan), max_abs_error_(max_abs_error) {} |
| |
| virtual bool MatchAndExplain(T value, |
| MatchResultListener* /* listener */) const { |
| const FloatingPoint<FloatType> lhs(value), rhs(rhs_); |
| |
| // Compares NaNs first, if nan_eq_nan_ is true. |
| if (lhs.is_nan() || rhs.is_nan()) { |
| if (lhs.is_nan() && rhs.is_nan()) { |
| return nan_eq_nan_; |
| } |
| // One is nan; the other is not nan. |
| return false; |
| } |
| if (HasMaxAbsError()) { |
| // We perform an equality check so that inf will match inf, regardless |
| // of error bounds. If the result of value - rhs_ would result in |
| // overflow or if either value is inf, the default result is infinity, |
| // which should only match if max_abs_error_ is also infinity. |
| return value == rhs_ || fabs(value - rhs_) <= max_abs_error_; |
| } else { |
| return lhs.AlmostEquals(rhs); |
| } |
| } |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| // os->precision() returns the previously set precision, which we |
| // store to restore the ostream to its original configuration |
| // after outputting. |
| const ::std::streamsize old_precision = os->precision( |
| ::std::numeric_limits<FloatType>::digits10 + 2); |
| if (FloatingPoint<FloatType>(rhs_).is_nan()) { |
| if (nan_eq_nan_) { |
| *os << "is NaN"; |
| } else { |
| *os << "never matches"; |
| } |
| } else { |
| *os << "is approximately " << rhs_; |
| if (HasMaxAbsError()) { |
| *os << " (absolute error <= " << max_abs_error_ << ")"; |
| } |
| } |
| os->precision(old_precision); |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| // As before, get original precision. |
| const ::std::streamsize old_precision = os->precision( |
| ::std::numeric_limits<FloatType>::digits10 + 2); |
| if (FloatingPoint<FloatType>(rhs_).is_nan()) { |
| if (nan_eq_nan_) { |
| *os << "isn't NaN"; |
| } else { |
| *os << "is anything"; |
| } |
| } else { |
| *os << "isn't approximately " << rhs_; |
| if (HasMaxAbsError()) { |
| *os << " (absolute error > " << max_abs_error_ << ")"; |
| } |
| } |
| // Restore original precision. |
| os->precision(old_precision); |
| } |
| |
| private: |
| bool HasMaxAbsError() const { |
| return max_abs_error_ >= 0; |
| } |
| |
| const FloatType rhs_; |
| const bool nan_eq_nan_; |
| // max_abs_error will be used for value comparison when >= 0. |
| const FloatType max_abs_error_; |
| |
| GTEST_DISALLOW_ASSIGN_(Impl); |
| }; |
| |
| // The following 3 type conversion operators allow FloatEq(rhs) and |
| // NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a |
| // Matcher<const float&>, or a Matcher<float&>, but nothing else. |
| // (While Google's C++ coding style doesn't allow arguments passed |
| // by non-const reference, we may see them in code not conforming to |
| // the style. Therefore Google Mock needs to support them.) |
| operator Matcher<FloatType>() const { |
| return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_, max_abs_error_)); |
| } |
| |
| operator Matcher<const FloatType&>() const { |
| return MakeMatcher( |
| new Impl<const FloatType&>(rhs_, nan_eq_nan_, max_abs_error_)); |
| } |
| |
| operator Matcher<FloatType&>() const { |
| return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_, max_abs_error_)); |
| } |
| |
| private: |
| const FloatType rhs_; |
| const bool nan_eq_nan_; |
| // max_abs_error will be used for value comparison when >= 0. |
| const FloatType max_abs_error_; |
| |
| GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher); |
| }; |
| |
| // Implements the Pointee(m) matcher for matching a pointer whose |
| // pointee matches matcher m. The pointer can be either raw or smart. |
| template <typename InnerMatcher> |
| class PointeeMatcher { |
| public: |
| explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
| |
| // This type conversion operator template allows Pointee(m) to be |
| // used as a matcher for any pointer type whose pointee type is |
| // compatible with the inner matcher, where type Pointer can be |
| // either a raw pointer or a smart pointer. |
| // |
| // The reason we do this instead of relying on |
| // MakePolymorphicMatcher() is that the latter is not flexible |
| // enough for implementing the DescribeTo() method of Pointee(). |
| template <typename Pointer> |
| operator Matcher<Pointer>() const { |
| return MakeMatcher(new Impl<Pointer>(matcher_)); |
| } |
| |
| private: |
| // The monomorphic implementation that works for a particular pointer type. |
| template <typename Pointer> |
| class Impl : public MatcherInterface<Pointer> { |
| public: |
| typedef typename PointeeOf<GTEST_REMOVE_CONST_( // NOLINT |
| GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee; |
| |
| explicit Impl(const InnerMatcher& matcher) |
| : matcher_(MatcherCast<const Pointee&>(matcher)) {} |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "points to a value that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "does not point to a value that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| virtual bool MatchAndExplain(Pointer pointer, |
| MatchResultListener* listener) const { |
| if (GetRawPointer(pointer) == NULL) |
| return false; |
| |
| *listener << "which points to "; |
| return MatchPrintAndExplain(*pointer, matcher_, listener); |
| } |
| |
| private: |
| const Matcher<const Pointee&> matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(Impl); |
| }; |
| |
| const InnerMatcher matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(PointeeMatcher); |
| }; |
| |
| // Implements the Field() matcher for matching a field (i.e. member |
| // variable) of an object. |
| template <typename Class, typename FieldType> |
| class FieldMatcher { |
| public: |
| FieldMatcher(FieldType Class::*field, |
| const Matcher<const FieldType&>& matcher) |
| : field_(field), matcher_(matcher) {} |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "is an object whose given field "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "is an object whose given field "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| template <typename T> |
| bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
| return MatchAndExplainImpl( |
| typename ::testing::internal:: |
| is_pointer<GTEST_REMOVE_CONST_(T)>::type(), |
| value, listener); |
| } |
| |
| private: |
| // The first argument of MatchAndExplainImpl() is needed to help |
| // Symbian's C++ compiler choose which overload to use. Its type is |
| // true_type iff the Field() matcher is used to match a pointer. |
| bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, |
| MatchResultListener* listener) const { |
| *listener << "whose given field is "; |
| return MatchPrintAndExplain(obj.*field_, matcher_, listener); |
| } |
| |
| bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, |
| MatchResultListener* listener) const { |
| if (p == NULL) |
| return false; |
| |
| *listener << "which points to an object "; |
| // Since *p has a field, it must be a class/struct/union type and |
| // thus cannot be a pointer. Therefore we pass false_type() as |
| // the first argument. |
| return MatchAndExplainImpl(false_type(), *p, listener); |
| } |
| |
| const FieldType Class::*field_; |
| const Matcher<const FieldType&> matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(FieldMatcher); |
| }; |
| |
| // Implements the Property() matcher for matching a property |
| // (i.e. return value of a getter method) of an object. |
| template <typename Class, typename PropertyType> |
| class PropertyMatcher { |
| public: |
| // The property may have a reference type, so 'const PropertyType&' |
| // may cause double references and fail to compile. That's why we |
| // need GTEST_REFERENCE_TO_CONST, which works regardless of |
| // PropertyType being a reference or not. |
| typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty; |
| |
| PropertyMatcher(PropertyType (Class::*property)() const, |
| const Matcher<RefToConstProperty>& matcher) |
| : property_(property), matcher_(matcher) {} |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "is an object whose given property "; |
| matcher_.DescribeTo(os); |
| } |
| |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "is an object whose given property "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| template <typename T> |
| bool MatchAndExplain(const T&value, MatchResultListener* listener) const { |
| return MatchAndExplainImpl( |
| typename ::testing::internal:: |
| is_pointer<GTEST_REMOVE_CONST_(T)>::type(), |
| value, listener); |
| } |
| |
| private: |
| // The first argument of MatchAndExplainImpl() is needed to help |
| // Symbian's C++ compiler choose which overload to use. Its type is |
| // true_type iff the Property() matcher is used to match a pointer. |
| bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, |
| MatchResultListener* listener) const { |
| *listener << "whose given property is "; |
| // Cannot pass the return value (for example, int) to MatchPrintAndExplain, |
| // which takes a non-const reference as argument. |
| RefToConstProperty result = (obj.*property_)(); |
| return MatchPrintAndExplain(result, matcher_, listener); |
| } |
| |
| bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, |
| MatchResultListener* listener) const { |
| if (p == NULL) |
| return false; |
| |
| *listener << "which points to an object "; |
| // Since *p has a property method, it must be a class/struct/union |
| // type and thus cannot be a pointer. Therefore we pass |
| // false_type() as the first argument. |
| return MatchAndExplainImpl(false_type(), *p, listener); |
| } |
| |
| PropertyType (Class::*property_)() const; |
| const Matcher<RefToConstProperty> matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(PropertyMatcher); |
| }; |
| |
| // Type traits specifying various features of different functors for ResultOf. |
| // The default template specifies features for functor objects. |
| // Functor classes have to typedef argument_type and result_type |
| // to be compatible with ResultOf. |
| template <typename Functor> |
| struct CallableTraits { |
| typedef typename Functor::result_type ResultType; |
| typedef Functor StorageType; |
| |
| static void CheckIsValid(Functor /* functor */) {} |
| template <typename T> |
| static ResultType Invoke(Functor f, T arg) { return f(arg); } |
| }; |
| |
| // Specialization for function pointers. |
| template <typename ArgType, typename ResType> |
| struct CallableTraits<ResType(*)(ArgType)> { |
| typedef ResType ResultType; |
| typedef ResType(*StorageType)(ArgType); |
| |
| static void CheckIsValid(ResType(*f)(ArgType)) { |
| GTEST_CHECK_(f != NULL) |
| << "NULL function pointer is passed into ResultOf()."; |
| } |
| template <typename T> |
| static ResType Invoke(ResType(*f)(ArgType), T arg) { |
| return (*f)(arg); |
| } |
| }; |
| |
| // Implements the ResultOf() matcher for matching a return value of a |
| // unary function of an object. |
| template <typename Callable> |
| class ResultOfMatcher { |
| public: |
| typedef typename CallableTraits<Callable>::ResultType ResultType; |
| |
| ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher) |
| : callable_(callable), matcher_(matcher) { |
| CallableTraits<Callable>::CheckIsValid(callable_); |
| } |
| |
| template <typename T> |
| operator Matcher<T>() const { |
| return Matcher<T>(new Impl<T>(callable_, matcher_)); |
| } |
| |
| private: |
| typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
| |
| template <typename T> |
| class Impl : public MatcherInterface<T> { |
| public: |
| Impl(CallableStorageType callable, const Matcher<ResultType>& matcher) |
| : callable_(callable), matcher_(matcher) {} |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "is mapped by the given callable to a value that "; |
| matcher_.DescribeTo(os); |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "is mapped by the given callable to a value that "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const { |
| *listener << "which is mapped by the given callable to "; |
| // Cannot pass the return value (for example, int) to |
| // MatchPrintAndExplain, which takes a non-const reference as argument. |
| ResultType result = |
| CallableTraits<Callable>::template Invoke<T>(callable_, obj); |
| return MatchPrintAndExplain(result, matcher_, listener); |
| } |
| |
| private: |
| // Functors often define operator() as non-const method even though |
| // they are actualy stateless. But we need to use them even when |
| // 'this' is a const pointer. It's the user's responsibility not to |
| // use stateful callables with ResultOf(), which does't guarantee |
| // how many times the callable will be invoked. |
| mutable CallableStorageType callable_; |
| const Matcher<ResultType> matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(Impl); |
| }; // class Impl |
| |
| const CallableStorageType callable_; |
| const Matcher<ResultType> matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(ResultOfMatcher); |
| }; |
| |
| // Implements a matcher that checks the size of an STL-style container. |
| template <typename SizeMatcher> |
| class SizeIsMatcher { |
| public: |
| explicit SizeIsMatcher(const SizeMatcher& size_matcher) |
| : size_matcher_(size_matcher) { |
| } |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return MakeMatcher(new Impl<Container>(size_matcher_)); |
| } |
| |
| template <typename Container> |
| class Impl : public MatcherInterface<Container> { |
| public: |
| typedef internal::StlContainerView< |
| GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; |
| typedef typename ContainerView::type::size_type SizeType; |
| explicit Impl(const SizeMatcher& size_matcher) |
| : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "size "; |
| size_matcher_.DescribeTo(os); |
| } |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "size "; |
| size_matcher_.DescribeNegationTo(os); |
| } |
| |
| virtual bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const { |
| SizeType size = container.size(); |
| StringMatchResultListener size_listener; |
| const bool result = size_matcher_.MatchAndExplain(size, &size_listener); |
| *listener |
| << "whose size " << size << (result ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(size_listener.str(), listener->stream()); |
| return result; |
| } |
| |
| private: |
| const Matcher<SizeType> size_matcher_; |
| GTEST_DISALLOW_ASSIGN_(Impl); |
| }; |
| |
| private: |
| const SizeMatcher size_matcher_; |
| GTEST_DISALLOW_ASSIGN_(SizeIsMatcher); |
| }; |
| |
| // Implements an equality matcher for any STL-style container whose elements |
| // support ==. This matcher is like Eq(), but its failure explanations provide |
| // more detailed information that is useful when the container is used as a set. |
| // The failure message reports elements that are in one of the operands but not |
| // the other. The failure messages do not report duplicate or out-of-order |
| // elements in the containers (which don't properly matter to sets, but can |
| // occur if the containers are vectors or lists, for example). |
| // |
| // Uses the container's const_iterator, value_type, operator ==, |
| // begin(), and end(). |
| template <typename Container> |
| class ContainerEqMatcher { |
| public: |
| typedef internal::StlContainerView<Container> View; |
| typedef typename View::type StlContainer; |
| typedef typename View::const_reference StlContainerReference; |
| |
| // We make a copy of rhs in case the elements in it are modified |
| // after this matcher is created. |
| explicit ContainerEqMatcher(const Container& rhs) : rhs_(View::Copy(rhs)) { |
| // Makes sure the user doesn't instantiate this class template |
| // with a const or reference type. |
| (void)testing::StaticAssertTypeEq<Container, |
| GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>(); |
| } |
| |
| void DescribeTo(::std::ostream* os) const { |
| *os << "equals "; |
| UniversalPrint(rhs_, os); |
| } |
| void DescribeNegationTo(::std::ostream* os) const { |
| *os << "does not equal "; |
| UniversalPrint(rhs_, os); |
| } |
| |
| template <typename LhsContainer> |
| bool MatchAndExplain(const LhsContainer& lhs, |
| MatchResultListener* listener) const { |
| // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug |
| // that causes LhsContainer to be a const type sometimes. |
| typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)> |
| LhsView; |
| typedef typename LhsView::type LhsStlContainer; |
| StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| if (lhs_stl_container == rhs_) |
| return true; |
| |
| ::std::ostream* const os = listener->stream(); |
| if (os != NULL) { |
| // Something is different. Check for extra values first. |
| bool printed_header = false; |
| for (typename LhsStlContainer::const_iterator it = |
| lhs_stl_container.begin(); |
| it != lhs_stl_container.end(); ++it) { |
| if (internal::ArrayAwareFind(rhs_.begin(), rhs_.end(), *it) == |
| rhs_.end()) { |
| if (printed_header) { |
| *os << ", "; |
| } else { |
| *os << "which has these unexpected elements: "; |
| printed_header = true; |
| } |
| UniversalPrint(*it, os); |
| } |
| } |
| |
| // Now check for missing values. |
| bool printed_header2 = false; |
| for (typename StlContainer::const_iterator it = rhs_.begin(); |
| it != rhs_.end(); ++it) { |
| if (internal::ArrayAwareFind( |
| lhs_stl_container.begin(), lhs_stl_container.end(), *it) == |
| lhs_stl_container.end()) { |
| if (printed_header2) { |
| *os << ", "; |
| } else { |
| *os << (printed_header ? ",\nand" : "which") |
| << " doesn't have these expected elements: "; |
| printed_header2 = true; |
| } |
| UniversalPrint(*it, os); |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| private: |
| const StlContainer rhs_; |
| |
| GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher); |
| }; |
| |
| // A comparator functor that uses the < operator to compare two values. |
| struct LessComparator { |
| template <typename T, typename U> |
| bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } |
| }; |
| |
| // Implements WhenSortedBy(comparator, container_matcher). |
| template <typename Comparator, typename ContainerMatcher> |
| class WhenSortedByMatcher { |
| public: |
| WhenSortedByMatcher(const Comparator& comparator, |
| const ContainerMatcher& matcher) |
| : comparator_(comparator), matcher_(matcher) {} |
| |
| template <typename LhsContainer> |
| operator Matcher<LhsContainer>() const { |
| return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); |
| } |
| |
| template <typename LhsContainer> |
| class Impl : public MatcherInterface<LhsContainer> { |
| public: |
| typedef internal::StlContainerView< |
| GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
| typedef typename LhsView::type LhsStlContainer; |
| typedef typename LhsView::const_reference LhsStlContainerReference; |
| // Transforms std::pair<const Key, Value> into std::pair<Key, Value> |
| // so that we can match associative containers. |
| typedef typename RemoveConstFromKey< |
| typename LhsStlContainer::value_type>::type LhsValue; |
| |
| Impl(const Comparator& comparator, const ContainerMatcher& matcher) |
| : comparator_(comparator), matcher_(matcher) {} |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "(when sorted) "; |
| matcher_.DescribeTo(os); |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "(when sorted) "; |
| matcher_.DescribeNegationTo(os); |
| } |
| |
| virtual bool MatchAndExplain(LhsContainer lhs, |
| MatchResultListener* listener) const { |
| LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), |
| lhs_stl_container.end()); |
| ::std::sort( |
| sorted_container.begin(), sorted_container.end(), comparator_); |
| |
| if (!listener->IsInterested()) { |
| // If the listener is not interested, we do not need to |
| // construct the inner explanation. |
| return matcher_.Matches(sorted_container); |
| } |
| |
| *listener << "which is "; |
| UniversalPrint(sorted_container, listener->stream()); |
| *listener << " when sorted"; |
| |
| StringMatchResultListener inner_listener; |
| const bool match = matcher_.MatchAndExplain(sorted_container, |
| &inner_listener); |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| return match; |
| } |
| |
| private: |
| const Comparator comparator_; |
| const Matcher<const ::std::vector<LhsValue>&> matcher_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); |
| }; |
| |
| private: |
| const Comparator comparator_; |
| const ContainerMatcher matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher); |
| }; |
| |
| // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher |
| // must be able to be safely cast to Matcher<tuple<const T1&, const |
| // T2&> >, where T1 and T2 are the types of elements in the LHS |
| // container and the RHS container respectively. |
| template <typename TupleMatcher, typename RhsContainer> |
| class PointwiseMatcher { |
| public: |
| typedef internal::StlContainerView<RhsContainer> RhsView; |
| typedef typename RhsView::type RhsStlContainer; |
| typedef typename RhsStlContainer::value_type RhsValue; |
| |
| // Like ContainerEq, we make a copy of rhs in case the elements in |
| // it are modified after this matcher is created. |
| PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) |
| : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) { |
| // Makes sure the user doesn't instantiate this class template |
| // with a const or reference type. |
| (void)testing::StaticAssertTypeEq<RhsContainer, |
| GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>(); |
| } |
| |
| template <typename LhsContainer> |
| operator Matcher<LhsContainer>() const { |
| return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_)); |
| } |
| |
| template <typename LhsContainer> |
| class Impl : public MatcherInterface<LhsContainer> { |
| public: |
| typedef internal::StlContainerView< |
| GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
| typedef typename LhsView::type LhsStlContainer; |
| typedef typename LhsView::const_reference LhsStlContainerReference; |
| typedef typename LhsStlContainer::value_type LhsValue; |
| // We pass the LHS value and the RHS value to the inner matcher by |
| // reference, as they may be expensive to copy. We must use tuple |
| // instead of pair here, as a pair cannot hold references (C++ 98, |
| // 20.2.2 [lib.pairs]). |
| typedef ::std::tr1::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; |
| |
| Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) |
| // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. |
| : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), |
| rhs_(rhs) {} |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "contains " << rhs_.size() |
| << " values, where each value and its corresponding value in "; |
| UniversalPrinter<RhsStlContainer>::Print(rhs_, os); |
| *os << " "; |
| mono_tuple_matcher_.DescribeTo(os); |
| } |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't contain exactly " << rhs_.size() |
| << " values, or contains a value x at some index i" |
| << " where x and the i-th value of "; |
| UniversalPrint(rhs_, os); |
| *os << " "; |
| mono_tuple_matcher_.DescribeNegationTo(os); |
| } |
| |
| virtual bool MatchAndExplain(LhsContainer lhs, |
| MatchResultListener* listener) const { |
| LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| const size_t actual_size = lhs_stl_container.size(); |
| if (actual_size != rhs_.size()) { |
| *listener << "which contains " << actual_size << " values"; |
| return false; |
| } |
| |
| typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); |
| typename RhsStlContainer::const_iterator right = rhs_.begin(); |
| for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { |
| const InnerMatcherArg value_pair(*left, *right); |
| |
| if (listener->IsInterested()) { |
| StringMatchResultListener inner_listener; |
| if (!mono_tuple_matcher_.MatchAndExplain( |
| value_pair, &inner_listener)) { |
| *listener << "where the value pair ("; |
| UniversalPrint(*left, listener->stream()); |
| *listener << ", "; |
| UniversalPrint(*right, listener->stream()); |
| *listener << ") at index #" << i << " don't match"; |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| return false; |
| } |
| } else { |
| if (!mono_tuple_matcher_.Matches(value_pair)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| private: |
| const Matcher<InnerMatcherArg> mono_tuple_matcher_; |
| const RhsStlContainer rhs_; |
| |
| GTEST_DISALLOW_ASSIGN_(Impl); |
| }; |
| |
| private: |
| const TupleMatcher tuple_matcher_; |
| const RhsStlContainer rhs_; |
| |
| GTEST_DISALLOW_ASSIGN_(PointwiseMatcher); |
| }; |
| |
| // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. |
| template <typename Container> |
| class QuantifierMatcherImpl : public MatcherInterface<Container> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef StlContainerView<RawContainer> View; |
| typedef typename View::type StlContainer; |
| typedef typename View::const_reference StlContainerReference; |
| typedef typename StlContainer::value_type Element; |
| |
| template <typename InnerMatcher> |
| explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) |
| : inner_matcher_( |
| testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
| |
| // Checks whether: |
| // * All elements in the container match, if all_elements_should_match. |
| // * Any element in the container matches, if !all_elements_should_match. |
| bool MatchAndExplainImpl(bool all_elements_should_match, |
| Container container, |
| MatchResultListener* listener) const { |
| StlContainerReference stl_container = View::ConstReference(container); |
| size_t i = 0; |
| for (typename StlContainer::const_iterator it = stl_container.begin(); |
| it != stl_container.end(); ++it, ++i) { |
| StringMatchResultListener inner_listener; |
| const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
| |
| if (matches != all_elements_should_match) { |
| *listener << "whose element #" << i |
| << (matches ? " matches" : " doesn't match"); |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| return !all_elements_should_match; |
| } |
| } |
| return all_elements_should_match; |
| } |
| |
| protected: |
| const Matcher<const Element&> inner_matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl); |
| }; |
| |
| // Implements Contains(element_matcher) for the given argument type Container. |
| // Symmetric to EachMatcherImpl. |
| template <typename Container> |
| class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { |
| public: |
| template <typename InnerMatcher> |
| explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
| : QuantifierMatcherImpl<Container>(inner_matcher) {} |
| |
| // Describes what this matcher does. |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "contains at least one element that "; |
| this->inner_matcher_.DescribeTo(os); |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't contain any element that "; |
| this->inner_matcher_.DescribeTo(os); |
| } |
| |
| virtual bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const { |
| return this->MatchAndExplainImpl(false, container, listener); |
| } |
| |
| private: |
| GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl); |
| }; |
| |
| // Implements Each(element_matcher) for the given argument type Container. |
| // Symmetric to ContainsMatcherImpl. |
| template <typename Container> |
| class EachMatcherImpl : public QuantifierMatcherImpl<Container> { |
| public: |
| template <typename InnerMatcher> |
| explicit EachMatcherImpl(InnerMatcher inner_matcher) |
| : QuantifierMatcherImpl<Container>(inner_matcher) {} |
| |
| // Describes what this matcher does. |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "only contains elements that "; |
| this->inner_matcher_.DescribeTo(os); |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "contains some element that "; |
| this->inner_matcher_.DescribeNegationTo(os); |
| } |
| |
| virtual bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const { |
| return this->MatchAndExplainImpl(true, container, listener); |
| } |
| |
| private: |
| GTEST_DISALLOW_ASSIGN_(EachMatcherImpl); |
| }; |
| |
| // Implements polymorphic Contains(element_matcher). |
| template <typename M> |
| class ContainsMatcher { |
| public: |
| explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_)); |
| } |
| |
| private: |
| const M inner_matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(ContainsMatcher); |
| }; |
| |
| // Implements polymorphic Each(element_matcher). |
| template <typename M> |
| class EachMatcher { |
| public: |
| explicit EachMatcher(M m) : inner_matcher_(m) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_)); |
| } |
| |
| private: |
| const M inner_matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(EachMatcher); |
| }; |
| |
| // Implements Key(inner_matcher) for the given argument pair type. |
| // Key(inner_matcher) matches an std::pair whose 'first' field matches |
| // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
| // std::map that contains at least one element whose key is >= 5. |
| template <typename PairType> |
| class KeyMatcherImpl : public MatcherInterface<PairType> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
| typedef typename RawPairType::first_type KeyType; |
| |
| template <typename InnerMatcher> |
| explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
| : inner_matcher_( |
| testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { |
| } |
| |
| // Returns true iff 'key_value.first' (the key) matches the inner matcher. |
| virtual bool MatchAndExplain(PairType key_value, |
| MatchResultListener* listener) const { |
| StringMatchResultListener inner_listener; |
| const bool match = inner_matcher_.MatchAndExplain(key_value.first, |
| &inner_listener); |
| const internal::string explanation = inner_listener.str(); |
| if (explanation != "") { |
| *listener << "whose first field is a value " << explanation; |
| } |
| return match; |
| } |
| |
| // Describes what this matcher does. |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "has a key that "; |
| inner_matcher_.DescribeTo(os); |
| } |
| |
| // Describes what the negation of this matcher does. |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "doesn't have a key that "; |
| inner_matcher_.DescribeTo(os); |
| } |
| |
| private: |
| const Matcher<const KeyType&> inner_matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl); |
| }; |
| |
| // Implements polymorphic Key(matcher_for_key). |
| template <typename M> |
| class KeyMatcher { |
| public: |
| explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
| |
| template <typename PairType> |
| operator Matcher<PairType>() const { |
| return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_)); |
| } |
| |
| private: |
| const M matcher_for_key_; |
| |
| GTEST_DISALLOW_ASSIGN_(KeyMatcher); |
| }; |
| |
| // Implements Pair(first_matcher, second_matcher) for the given argument pair |
| // type with its two matchers. See Pair() function below. |
| template <typename PairType> |
| class PairMatcherImpl : public MatcherInterface<PairType> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
| typedef typename RawPairType::first_type FirstType; |
| typedef typename RawPairType::second_type SecondType; |
| |
| template <typename FirstMatcher, typename SecondMatcher> |
| PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
| : first_matcher_( |
| testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
| second_matcher_( |
| testing::SafeMatcherCast<const SecondType&>(second_matcher)) { |
| } |
| |
| // Describes what this matcher does. |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "has a first field that "; |
| first_matcher_.DescribeTo(os); |
| *os << ", and has a second field that "; |
| second_matcher_.DescribeTo(os); |
| } |
| |
| // Describes what the negation of this matcher does. |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "has a first field that "; |
| first_matcher_.DescribeNegationTo(os); |
| *os << ", or has a second field that "; |
| second_matcher_.DescribeNegationTo(os); |
| } |
| |
| // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second' |
| // matches second_matcher. |
| virtual bool MatchAndExplain(PairType a_pair, |
| MatchResultListener* listener) const { |
| if (!listener->IsInterested()) { |
| // If the listener is not interested, we don't need to construct the |
| // explanation. |
| return first_matcher_.Matches(a_pair.first) && |
| second_matcher_.Matches(a_pair.second); |
| } |
| StringMatchResultListener first_inner_listener; |
| if (!first_matcher_.MatchAndExplain(a_pair.first, |
| &first_inner_listener)) { |
| *listener << "whose first field does not match"; |
| PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); |
| return false; |
| } |
| StringMatchResultListener second_inner_listener; |
| if (!second_matcher_.MatchAndExplain(a_pair.second, |
| &second_inner_listener)) { |
| *listener << "whose second field does not match"; |
| PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); |
| return false; |
| } |
| ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), |
| listener); |
| return true; |
| } |
| |
| private: |
| void ExplainSuccess(const internal::string& first_explanation, |
| const internal::string& second_explanation, |
| MatchResultListener* listener) const { |
| *listener << "whose both fields match"; |
| if (first_explanation != "") { |
| *listener << ", where the first field is a value " << first_explanation; |
| } |
| if (second_explanation != "") { |
| *listener << ", "; |
| if (first_explanation != "") { |
| *listener << "and "; |
| } else { |
| *listener << "where "; |
| } |
| *listener << "the second field is a value " << second_explanation; |
| } |
| } |
| |
| const Matcher<const FirstType&> first_matcher_; |
| const Matcher<const SecondType&> second_matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(PairMatcherImpl); |
| }; |
| |
| // Implements polymorphic Pair(first_matcher, second_matcher). |
| template <typename FirstMatcher, typename SecondMatcher> |
| class PairMatcher { |
| public: |
| PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
| : first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
| |
| template <typename PairType> |
| operator Matcher<PairType> () const { |
| return MakeMatcher( |
| new PairMatcherImpl<PairType>( |
| first_matcher_, second_matcher_)); |
| } |
| |
| private: |
| const FirstMatcher first_matcher_; |
| const SecondMatcher second_matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(PairMatcher); |
| }; |
| |
| // Implements ElementsAre() and ElementsAreArray(). |
| template <typename Container> |
| class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef internal::StlContainerView<RawContainer> View; |
| typedef typename View::type StlContainer; |
| typedef typename View::const_reference StlContainerReference; |
| typedef typename StlContainer::value_type Element; |
| |
| // Constructs the matcher from a sequence of element values or |
| // element matchers. |
| template <typename InputIter> |
| ElementsAreMatcherImpl(InputIter first, InputIter last) { |
| while (first != last) { |
| matchers_.push_back(MatcherCast<const Element&>(*first++)); |
| } |
| } |
| |
| // Describes what this matcher does. |
| virtual void DescribeTo(::std::ostream* os) const { |
| if (count() == 0) { |
| *os << "is empty"; |
| } else if (count() == 1) { |
| *os << "has 1 element that "; |
| matchers_[0].DescribeTo(os); |
| } else { |
| *os << "has " << Elements(count()) << " where\n"; |
| for (size_t i = 0; i != count(); ++i) { |
| *os << "element #" << i << " "; |
| matchers_[i].DescribeTo(os); |
| if (i + 1 < count()) { |
| *os << ",\n"; |
| } |
| } |
| } |
| } |
| |
| // Describes what the negation of this matcher does. |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| if (count() == 0) { |
| *os << "isn't empty"; |
| return; |
| } |
| |
| *os << "doesn't have " << Elements(count()) << ", or\n"; |
| for (size_t i = 0; i != count(); ++i) { |
| *os << "element #" << i << " "; |
| matchers_[i].DescribeNegationTo(os); |
| if (i + 1 < count()) { |
| *os << ", or\n"; |
| } |
| } |
| } |
| |
| virtual bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const { |
| // To work with stream-like "containers", we must only walk |
| // through the elements in one pass. |
| |
| const bool listener_interested = listener->IsInterested(); |
| |
| // explanations[i] is the explanation of the element at index i. |
| ::std::vector<internal::string> explanations(count()); |
| StlContainerReference stl_container = View::ConstReference(container); |
| typename StlContainer::const_iterator it = stl_container.begin(); |
| size_t exam_pos = 0; |
| bool mismatch_found = false; // Have we found a mismatched element yet? |
| |
| // Go through the elements and matchers in pairs, until we reach |
| // the end of either the elements or the matchers, or until we find a |
| // mismatch. |
| for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { |
| bool match; // Does the current element match the current matcher? |
| if (listener_interested) { |
| StringMatchResultListener s; |
| match = matchers_[exam_pos].MatchAndExplain(*it, &s); |
| explanations[exam_pos] = s.str(); |
| } else { |
| match = matchers_[exam_pos].Matches(*it); |
| } |
| |
| if (!match) { |
| mismatch_found = true; |
| break; |
| } |
| } |
| // If mismatch_found is true, 'exam_pos' is the index of the mismatch. |
| |
| // Find how many elements the actual container has. We avoid |
| // calling size() s.t. this code works for stream-like "containers" |
| // that don't define size(). |
| size_t actual_count = exam_pos; |
| for (; it != stl_container.end(); ++it) { |
| ++actual_count; |
| } |
| |
| if (actual_count != count()) { |
| // The element count doesn't match. If the container is empty, |
| // there's no need to explain anything as Google Mock already |
| // prints the empty container. Otherwise we just need to show |
| // how many elements there actually are. |
| if (listener_interested && (actual_count != 0)) { |
| *listener << "which has " << Elements(actual_count); |
| } |
| return false; |
| } |
| |
| if (mismatch_found) { |
| // The element count matches, but the exam_pos-th element doesn't match. |
| if (listener_interested) { |
| *listener << "whose element #" << exam_pos << " doesn't match"; |
| PrintIfNotEmpty(explanations[exam_pos], listener->stream()); |
| } |
| return false; |
| } |
| |
| // Every element matches its expectation. We need to explain why |
| // (the obvious ones can be skipped). |
| if (listener_interested) { |
| bool reason_printed = false; |
| for (size_t i = 0; i != count(); ++i) { |
| const internal::string& s = explanations[i]; |
| if (!s.empty()) { |
| if (reason_printed) { |
| *listener << ",\nand "; |
| } |
| *listener << "whose element #" << i << " matches, " << s; |
| reason_printed = true; |
| } |
| } |
| } |
| return true; |
| } |
| |
| private: |
| static Message Elements(size_t count) { |
| return Message() << count << (count == 1 ? " element" : " elements"); |
| } |
| |
| size_t count() const { return matchers_.size(); } |
| |
| ::std::vector<Matcher<const Element&> > matchers_; |
| |
| GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl); |
| }; |
| |
| // Connectivity matrix of (elements X matchers), in element-major order. |
| // Initially, there are no edges. |
| // Use NextGraph() to iterate over all possible edge configurations. |
| // Use Randomize() to generate a random edge configuration. |
| class GTEST_API_ MatchMatrix { |
| public: |
| MatchMatrix(size_t num_elements, size_t num_matchers) |
| : num_elements_(num_elements), |
| num_matchers_(num_matchers), |
| matched_(num_elements_* num_matchers_, 0) { |
| } |
| |
| size_t LhsSize() const { return num_elements_; } |
| size_t RhsSize() const { return num_matchers_; } |
| bool HasEdge(size_t ilhs, size_t irhs) const { |
| return matched_[SpaceIndex(ilhs, irhs)] == 1; |
| } |
| void SetEdge(size_t ilhs, size_t irhs, bool b) { |
| matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; |
| } |
| |
| // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, |
| // adds 1 to that number; returns false if incrementing the graph left it |
| // empty. |
| bool NextGraph(); |
| |
| void Randomize(); |
| |
| string DebugString() const; |
| |
| private: |
| size_t SpaceIndex(size_t ilhs, size_t irhs) const { |
| return ilhs * num_matchers_ + irhs; |
| } |
| |
| size_t num_elements_; |
| size_t num_matchers_; |
| |
| // Each element is a char interpreted as bool. They are stored as a |
| // flattened array in lhs-major order, use 'SpaceIndex()' to translate |
| // a (ilhs, irhs) matrix coordinate into an offset. |
| ::std::vector<char> matched_; |
| }; |
| |
| typedef ::std::pair<size_t, size_t> ElementMatcherPair; |
| typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; |
| |
| // Returns a maximum bipartite matching for the specified graph 'g'. |
| // The matching is represented as a vector of {element, matcher} pairs. |
| GTEST_API_ ElementMatcherPairs |
| FindMaxBipartiteMatching(const MatchMatrix& g); |
| |
| GTEST_API_ bool FindPairing(const MatchMatrix& matrix, |
| MatchResultListener* listener); |
| |
| // Untyped base class for implementing UnorderedElementsAre. By |
| // putting logic that's not specific to the element type here, we |
| // reduce binary bloat and increase compilation speed. |
| class GTEST_API_ UnorderedElementsAreMatcherImplBase { |
| protected: |
| // A vector of matcher describers, one for each element matcher. |
| // Does not own the describers (and thus can be used only when the |
| // element matchers are alive). |
| typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; |
| |
| // Describes this UnorderedElementsAre matcher. |
| void DescribeToImpl(::std::ostream* os) const; |
| |
| // Describes the negation of this UnorderedElementsAre matcher. |
| void DescribeNegationToImpl(::std::ostream* os) const; |
| |
| bool VerifyAllElementsAndMatchersAreMatched( |
| const ::std::vector<string>& element_printouts, |
| const MatchMatrix& matrix, |
| MatchResultListener* listener) const; |
| |
| MatcherDescriberVec& matcher_describers() { |
| return matcher_describers_; |
| } |
| |
| static Message Elements(size_t n) { |
| return Message() << n << " element" << (n == 1 ? "" : "s"); |
| } |
| |
| private: |
| MatcherDescriberVec matcher_describers_; |
| |
| GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase); |
| }; |
| |
| // Implements unordered ElementsAre and unordered ElementsAreArray. |
| template <typename Container> |
| class UnorderedElementsAreMatcherImpl |
| : public MatcherInterface<Container>, |
| public UnorderedElementsAreMatcherImplBase { |
| public: |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef internal::StlContainerView<RawContainer> View; |
| typedef typename View::type StlContainer; |
| typedef typename View::const_reference StlContainerReference; |
| typedef typename StlContainer::const_iterator StlContainerConstIterator; |
| typedef typename StlContainer::value_type Element; |
| |
| // Constructs the matcher from a sequence of element values or |
| // element matchers. |
| template <typename InputIter> |
| UnorderedElementsAreMatcherImpl(InputIter first, InputIter last) { |
| for (; first != last; ++first) { |
| matchers_.push_back(MatcherCast<const Element&>(*first)); |
| matcher_describers().push_back(matchers_.back().GetDescriber()); |
| } |
| } |
| |
| // Describes what this matcher does. |
| virtual void DescribeTo(::std::ostream* os) const { |
| return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); |
| } |
| |
| // Describes what the negation of this matcher does. |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); |
| } |
| |
| virtual bool MatchAndExplain(Container container, |
| MatchResultListener* listener) const { |
| StlContainerReference stl_container = View::ConstReference(container); |
| ::std::vector<string> element_printouts; |
| MatchMatrix matrix = AnalyzeElements(stl_container.begin(), |
| stl_container.end(), |
| &element_printouts, |
| listener); |
| |
| const size_t actual_count = matrix.LhsSize(); |
| if (actual_count == 0 && matchers_.empty()) { |
| return true; |
| } |
| if (actual_count != matchers_.size()) { |
| // The element count doesn't match. If the container is empty, |
| // there's no need to explain anything as Google Mock already |
| // prints the empty container. Otherwise we just need to show |
| // how many elements there actually are. |
| if (actual_count != 0 && listener->IsInterested()) { |
| *listener << "which has " << Elements(actual_count); |
| } |
| return false; |
| } |
| |
| return VerifyAllElementsAndMatchersAreMatched(element_printouts, |
| matrix, listener) && |
| FindPairing(matrix, listener); |
| } |
| |
| private: |
| typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
| |
| template <typename ElementIter> |
| MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, |
| ::std::vector<string>* element_printouts, |
| MatchResultListener* listener) const { |
| element_printouts->clear(); |
| ::std::vector<char> did_match; |
| size_t num_elements = 0; |
| for (; elem_first != elem_last; ++num_elements, ++elem_first) { |
| if (listener->IsInterested()) { |
| element_printouts->push_back(PrintToString(*elem_first)); |
| } |
| for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
| did_match.push_back(Matches(matchers_[irhs])(*elem_first)); |
| } |
| } |
| |
| MatchMatrix matrix(num_elements, matchers_.size()); |
| ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); |
| for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { |
| for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
| matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); |
| } |
| } |
| return matrix; |
| } |
| |
| MatcherVec matchers_; |
| |
| GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl); |
| }; |
| |
| // Functor for use in TransformTuple. |
| // Performs MatcherCast<Target> on an input argument of any type. |
| template <typename Target> |
| struct CastAndAppendTransform { |
| template <typename Arg> |
| Matcher<Target> operator()(const Arg& a) const { |
| return MatcherCast<Target>(a); |
| } |
| }; |
| |
| // Implements UnorderedElementsAre. |
| template <typename MatcherTuple> |
| class UnorderedElementsAreMatcher { |
| public: |
| explicit UnorderedElementsAreMatcher(const MatcherTuple& args) |
| : matchers_(args) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef typename internal::StlContainerView<RawContainer>::type View; |
| typedef typename View::value_type Element; |
| typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
| MatcherVec matchers; |
| matchers.reserve(::std::tr1::tuple_size<MatcherTuple>::value); |
| TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
| ::std::back_inserter(matchers)); |
| return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>( |
| matchers.begin(), matchers.end())); |
| } |
| |
| private: |
| const MatcherTuple matchers_; |
| GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher); |
| }; |
| |
| // Implements ElementsAre. |
| template <typename MatcherTuple> |
| class ElementsAreMatcher { |
| public: |
| explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| typedef typename internal::StlContainerView<RawContainer>::type View; |
| typedef typename View::value_type Element; |
| typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
| MatcherVec matchers; |
| matchers.reserve(::std::tr1::tuple_size<MatcherTuple>::value); |
| TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
| ::std::back_inserter(matchers)); |
| return MakeMatcher(new ElementsAreMatcherImpl<Container>( |
| matchers.begin(), matchers.end())); |
| } |
| |
| private: |
| const MatcherTuple matchers_; |
| GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher); |
| }; |
| |
| // Implements UnorderedElementsAreArray(). |
| template <typename T> |
| class UnorderedElementsAreArrayMatcher { |
| public: |
| UnorderedElementsAreArrayMatcher() {} |
| |
| template <typename Iter> |
| UnorderedElementsAreArrayMatcher(Iter first, Iter last) |
| : matchers_(first, last) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return MakeMatcher( |
| new UnorderedElementsAreMatcherImpl<Container>(matchers_.begin(), |
| matchers_.end())); |
| } |
| |
| private: |
| ::std::vector<T> matchers_; |
| |
| GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher); |
| }; |
| |
| // Implements ElementsAreArray(). |
| template <typename T> |
| class ElementsAreArrayMatcher { |
| public: |
| template <typename Iter> |
| ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
| |
| template <typename Container> |
| operator Matcher<Container>() const { |
| return MakeMatcher(new ElementsAreMatcherImpl<Container>( |
| matchers_.begin(), matchers_.end())); |
| } |
| |
| private: |
| const ::std::vector<T> matchers_; |
| |
| GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher); |
| }; |
| |
| // Returns the description for a matcher defined using the MATCHER*() |
| // macro where the user-supplied description string is "", if |
| // 'negation' is false; otherwise returns the description of the |
| // negation of the matcher. 'param_values' contains a list of strings |
| // that are the print-out of the matcher's parameters. |
| GTEST_API_ string FormatMatcherDescription(bool negation, |
| const char* matcher_name, |
| const Strings& param_values); |
| |
| } // namespace internal |
| |
| // ElementsAreArray(first, last) |
| // ElementsAreArray(pointer, count) |
| // ElementsAreArray(array) |
| // ElementsAreArray(vector) |
| // ElementsAreArray({ e1, e2, ..., en }) |
| // |
| // The ElementsAreArray() functions are like ElementsAre(...), except |
| // that they are given a homogeneous sequence rather than taking each |
| // element as a function argument. The sequence can be specified as an |
| // array, a pointer and count, a vector, an initializer list, or an |
| // STL iterator range. In each of these cases, the underlying sequence |
| // can be either a sequence of values or a sequence of matchers. |
| // |
| // All forms of ElementsAreArray() make a copy of the input matcher sequence. |
| |
| template <typename Iter> |
| inline internal::ElementsAreArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| ElementsAreArray(Iter first, Iter last) { |
| typedef typename ::std::iterator_traits<Iter>::value_type T; |
| return internal::ElementsAreArrayMatcher<T>(first, last); |
| } |
| |
| template <typename T> |
| inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
| const T* pointer, size_t count) { |
| return ElementsAreArray(pointer, pointer + count); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
| const T (&array)[N]) { |
| return ElementsAreArray(array, N); |
| } |
| |
| template <typename T, typename A> |
| inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
| const ::std::vector<T, A>& vec) { |
| return ElementsAreArray(vec.begin(), vec.end()); |
| } |
| |
| #if GTEST_HAS_STD_INITIALIZER_LIST_ |
| template <typename T> |
| inline internal::ElementsAreArrayMatcher<T> |
| ElementsAreArray(::std::initializer_list<T> xs) { |
| return ElementsAreArray(xs.begin(), xs.end()); |
| } |
| #endif |
| |
| // UnorderedElementsAreArray(first, last) |
| // UnorderedElementsAreArray(pointer, count) |
| // UnorderedElementsAreArray(array) |
| // UnorderedElementsAreArray(vector) |
| // UnorderedElementsAreArray({ e1, e2, ..., en }) |
| // |
| // The UnorderedElementsAreArray() functions are like |
| // ElementsAreArray(...), but allow matching the elements in any order. |
| template <typename Iter> |
| inline internal::UnorderedElementsAreArrayMatcher< |
| typename ::std::iterator_traits<Iter>::value_type> |
| UnorderedElementsAreArray(Iter first, Iter last) { |
| typedef typename ::std::iterator_traits<Iter>::value_type T; |
| return internal::UnorderedElementsAreArrayMatcher<T>(first, last); |
| } |
| |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> |
| UnorderedElementsAreArray(const T* pointer, size_t count) { |
| return UnorderedElementsAreArray(pointer, pointer + count); |
| } |
| |
| template <typename T, size_t N> |
| inline internal::UnorderedElementsAreArrayMatcher<T> |
| UnorderedElementsAreArray(const T (&array)[N]) { |
| return UnorderedElementsAreArray(array, N); |
| } |
| |
| template <typename T, typename A> |
| inline internal::UnorderedElementsAreArrayMatcher<T> |
| UnorderedElementsAreArray(const ::std::vector<T, A>& vec) { |
| return UnorderedElementsAreArray(vec.begin(), vec.end()); |
| } |
| |
| #if GTEST_HAS_STD_INITIALIZER_LIST_ |
| template <typename T> |
| inline internal::UnorderedElementsAreArrayMatcher<T> |
| UnorderedElementsAreArray(::std::initializer_list<T> xs) { |
| return UnorderedElementsAreArray(xs.begin(), xs.end()); |
| } |
| #endif |
| |
| // _ is a matcher that matches anything of any type. |
| // |
| // This definition is fine as: |
| // |
| // 1. The C++ standard permits using the name _ in a namespace that |
| // is not the global namespace or ::std. |
| // 2. The AnythingMatcher class has no data member or constructor, |
| // so it's OK to create global variables of this type. |
| // 3. c-style has approved of using _ in this case. |
| const internal::AnythingMatcher _ = {}; |
| // Creates a matcher that matches any value of the given type T. |
| template <typename T> |
| inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); } |
| |
| // Creates a matcher that matches any value of the given type T. |
| template <typename T> |
| inline Matcher<T> An() { return A<T>(); } |
| |
| // Creates a polymorphic matcher that matches anything equal to x. |
| // Note: if the parameter of Eq() were declared as const T&, Eq("foo") |
| // wouldn't compile. |
| template <typename T> |
| inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); } |
| |
| // Constructs a Matcher<T> from a 'value' of type T. The constructed |
| // matcher matches any value that's equal to 'value'. |
| template <typename T> |
| Matcher<T>::Matcher(T value) { *this = Eq(value); } |
| |
| // Creates a monomorphic matcher that matches anything with type Lhs |
| // and equal to rhs. A user may need to use this instead of Eq(...) |
| // in order to resolve an overloading ambiguity. |
| // |
| // TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x)) |
| // or Matcher<T>(x), but more readable than the latter. |
| // |
| // We could define similar monomorphic matchers for other comparison |
| // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do |
| // it yet as those are used much less than Eq() in practice. A user |
| // can always write Matcher<T>(Lt(5)) to be explicit about the type, |
| // for example. |
| template <typename Lhs, typename Rhs> |
| inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); } |
| |
| // Creates a polymorphic matcher that matches anything >= x. |
| template <typename Rhs> |
| inline internal::GeMatcher<Rhs> Ge(Rhs x) { |
| return internal::GeMatcher<Rhs>(x); |
| } |
| |
| // Creates a polymorphic matcher that matches anything > x. |
| template <typename Rhs> |
| inline internal::GtMatcher<Rhs> Gt(Rhs x) { |
| return internal::GtMatcher<Rhs>(x); |
| } |
| |
| // Creates a polymorphic matcher that matches anything <= x. |
| template <typename Rhs> |
| inline internal::LeMatcher<Rhs> Le(Rhs x) { |
| return internal::LeMatcher<Rhs>(x); |
| } |
| |
| // Creates a polymorphic matcher that matches anything < x. |
| template <typename Rhs> |
| inline internal::LtMatcher<Rhs> Lt(Rhs x) { |
| return internal::LtMatcher<Rhs>(x); |
| } |
| |
| // Creates a polymorphic matcher that matches anything != x. |
| template <typename Rhs> |
| inline internal::NeMatcher<Rhs> Ne(Rhs x) { |
| return internal::NeMatcher<Rhs>(x); |
| } |
| |
| // Creates a polymorphic matcher that matches any NULL pointer. |
| inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { |
| return MakePolymorphicMatcher(internal::IsNullMatcher()); |
| } |
| |
| // Creates a polymorphic matcher that matches any non-NULL pointer. |
| // This is convenient as Not(NULL) doesn't compile (the compiler |
| // thinks that that expression is comparing a pointer with an integer). |
| inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { |
| return MakePolymorphicMatcher(internal::NotNullMatcher()); |
| } |
| |
| // Creates a polymorphic matcher that matches any argument that |
| // references variable x. |
| template <typename T> |
| inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
| return internal::RefMatcher<T&>(x); |
| } |
| |
| // Creates a matcher that matches any double argument approximately |
| // equal to rhs, where two NANs are considered unequal. |
| inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
| return internal::FloatingEqMatcher<double>(rhs, false); |
| } |
| |
| // Creates a matcher that matches any double argument approximately |
| // equal to rhs, including NaN values when rhs is NaN. |
| inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
| return internal::FloatingEqMatcher<double>(rhs, true); |
| } |
| |
| // Creates a matcher that matches any double argument approximately equal to |
| // rhs, up to the specified max absolute error bound, where two NANs are |
| // considered unequal. The max absolute error bound must be non-negative. |
| inline internal::FloatingEqMatcher<double> DoubleNear( |
| double rhs, double max_abs_error) { |
| return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); |
| } |
| |
| // Creates a matcher that matches any double argument approximately equal to |
| // rhs, up to the specified max absolute error bound, including NaN values when |
| // rhs is NaN. The max absolute error bound must be non-negative. |
| inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( |
| double rhs, double max_abs_error) { |
| return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); |
| } |
| |
| // Creates a matcher that matches any float argument approximately |
| // equal to rhs, where two NANs are considered unequal. |
| inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
| return internal::FloatingEqMatcher<float>(rhs, false); |
| } |
| |
| // Creates a matcher that matches any float argument approximately |
| // equal to rhs, including NaN values when rhs is NaN. |
| inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
| return internal::FloatingEqMatcher<float>(rhs, true); |
| } |
| |
| // Creates a matcher that matches any float argument approximately equal to |
| // rhs, up to the specified max absolute error bound, where two NANs are |
| // considered unequal. The max absolute error bound must be non-negative. |
| inline internal::FloatingEqMatcher<float> FloatNear( |
| float rhs, float max_abs_error) { |
| return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); |
| } |
| |
| // Creates a matcher that matches any float argument approximately equal to |
| // rhs, up to the specified max absolute error bound, including NaN values when |
| // rhs is NaN. The max absolute error bound must be non-negative. |
| inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( |
| float rhs, float max_abs_error) { |
| return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); |
| } |
| |
| // Creates a matcher that matches a pointer (raw or smart) that points |
| // to a value that matches inner_matcher. |
| template <typename InnerMatcher> |
| inline internal::PointeeMatcher<InnerMatcher> Pointee( |
| const InnerMatcher& inner_matcher) { |
| return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
| } |
| |
| // Creates a matcher that matches an object whose given field matches |
| // 'matcher'. For example, |
| // Field(&Foo::number, Ge(5)) |
| // matches a Foo object x iff x.number >= 5. |
| template <typename Class, typename FieldType, typename FieldMatcher> |
| inline PolymorphicMatcher< |
| internal::FieldMatcher<Class, FieldType> > Field( |
| FieldType Class::*field, const FieldMatcher& matcher) { |
| return MakePolymorphicMatcher( |
| internal::FieldMatcher<Class, FieldType>( |
| field, MatcherCast<const FieldType&>(matcher))); |
| // The call to MatcherCast() is required for supporting inner |
| // matchers of compatible types. For example, it allows |
| // Field(&Foo::bar, m) |
| // to compile where bar is an int32 and m is a matcher for int64. |
| } |
| |
| // Creates a matcher that matches an object whose given property |
| // matches 'matcher'. For example, |
| // Property(&Foo::str, StartsWith("hi")) |
| // matches a Foo object x iff x.str() starts with "hi". |
| template <typename Class, typename PropertyType, typename PropertyMatcher> |
| inline PolymorphicMatcher< |
| internal::PropertyMatcher<Class, PropertyType> > Property( |
| PropertyType (Class::*property)() const, const PropertyMatcher& matcher) { |
| return MakePolymorphicMatcher( |
| internal::PropertyMatcher<Class, PropertyType>( |
| property, |
| MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); |
| // The call to MatcherCast() is required for supporting inner |
| // matchers of compatible types. For example, it allows |
| // Property(&Foo::bar, m) |
| // to compile where bar() returns an int32 and m is a matcher for int64. |
| } |
| |
| // Creates a matcher that matches an object iff the result of applying |
| // a callable to x matches 'matcher'. |
| // For example, |
| // ResultOf(f, StartsWith("hi")) |
| // matches a Foo object x iff f(x) starts with "hi". |
| // callable parameter can be a function, function pointer, or a functor. |
| // Callable has to satisfy the following conditions: |
| // * It is required to keep no state affecting the results of |
| // the calls on it and make no assumptions about how many calls |
| // will be made. Any state it keeps must be protected from the |
| // concurrent access. |
| // * If it is a function object, it has to define type result_type. |
| // We recommend deriving your functor classes from std::unary_function. |
| template <typename Callable, typename ResultOfMatcher> |
| internal::ResultOfMatcher<Callable> ResultOf( |
| Callable callable, const ResultOfMatcher& matcher) { |
| return internal::ResultOfMatcher<Callable>( |
| callable, |
| MatcherCast<typename internal::CallableTraits<Callable>::ResultType>( |
| matcher)); |
| // The call to MatcherCast() is required for supporting inner |
| // matchers of compatible types. For example, it allows |
| // ResultOf(Function, m) |
| // to compile where Function() returns an int32 and m is a matcher for int64. |
| } |
| |
| // String matchers. |
| |
| // Matches a string equal to str. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > |
| StrEq(const internal::string& str) { |
| return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( |
| str, true, true)); |
| } |
| |
| // Matches a string not equal to str. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > |
| StrNe(const internal::string& str) { |
| return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( |
| str, false, true)); |
| } |
| |
| // Matches a string equal to str, ignoring case. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > |
| StrCaseEq(const internal::string& str) { |
| return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( |
| str, true, false)); |
| } |
| |
| // Matches a string not equal to str, ignoring case. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > |
| StrCaseNe(const internal::string& str) { |
| return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( |
| str, false, false)); |
| } |
| |
| // Creates a matcher that matches any string, std::string, or C string |
| // that contains the given substring. |
| inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> > |
| HasSubstr(const internal::string& substring) { |
| return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>( |
| substring)); |
| } |
| |
| // Matches a string that starts with 'prefix' (case-sensitive). |
| inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> > |
| StartsWith(const internal::string& prefix) { |
| return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>( |
| prefix)); |
| } |
| |
| // Matches a string that ends with 'suffix' (case-sensitive). |
| inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> > |
| EndsWith(const internal::string& suffix) { |
| return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>( |
| suffix)); |
| } |
| |
| // Matches a string that fully matches regular expression 'regex'. |
| // The matcher takes ownership of 'regex'. |
| inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( |
| const internal::RE* regex) { |
| return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true)); |
| } |
| inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( |
| const internal::string& regex) { |
| return MatchesRegex(new internal::RE(regex)); |
| } |
| |
| // Matches a string that contains regular expression 'regex'. |
| // The matcher takes ownership of 'regex'. |
| inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( |
| const internal::RE* regex) { |
| return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false)); |
| } |
| inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( |
| const internal::string& regex) { |
| return ContainsRegex(new internal::RE(regex)); |
| } |
| |
| #if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING |
| // Wide string matchers. |
| |
| // Matches a string equal to str. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > |
| StrEq(const internal::wstring& str) { |
| return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( |
| str, true, true)); |
| } |
| |
| // Matches a string not equal to str. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > |
| StrNe(const internal::wstring& str) { |
| return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( |
| str, false, true)); |
| } |
| |
| // Matches a string equal to str, ignoring case. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > |
| StrCaseEq(const internal::wstring& str) { |
| return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( |
| str, true, false)); |
| } |
| |
| // Matches a string not equal to str, ignoring case. |
| inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > |
| StrCaseNe(const internal::wstring& str) { |
| return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( |
| str, false, false)); |
| } |
| |
| // Creates a matcher that matches any wstring, std::wstring, or C wide string |
| // that contains the given substring. |
| inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> > |
| HasSubstr(const internal::wstring& substring) { |
| return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>( |
| substring)); |
| } |
| |
| // Matches a string that starts with 'prefix' (case-sensitive). |
| inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> > |
| StartsWith(const internal::wstring& prefix) { |
| return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>( |
| prefix)); |
| } |
| |
| // Matches a string that ends with 'suffix' (case-sensitive). |
| inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> > |
| EndsWith(const internal::wstring& suffix) { |
| return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>( |
| suffix)); |
| } |
| |
| #endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field == the second field. |
| inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field >= the second field. |
| inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field > the second field. |
| inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field <= the second field. |
| inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field < the second field. |
| inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
| |
| // Creates a polymorphic matcher that matches a 2-tuple where the |
| // first field != the second field. |
| inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
| |
| // Creates a matcher that matches any value of type T that m doesn't |
| // match. |
| template <typename InnerMatcher> |
| inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
| return internal::NotMatcher<InnerMatcher>(m); |
| } |
| |
| // Returns a matcher that matches anything that satisfies the given |
| // predicate. The predicate can be any unary function or functor |
| // whose return type can be implicitly converted to bool. |
| template <typename Predicate> |
| inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > |
| Truly(Predicate pred) { |
| return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
| } |
| |
| // Returns a matcher that matches the container size. The container must |
| // support both size() and size_type which all STL-like containers provide. |
| // Note that the parameter 'size' can be a value of type size_type as well as |
| // matcher. For instance: |
| // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. |
| // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. |
| template <typename SizeMatcher> |
| inline internal::SizeIsMatcher<SizeMatcher> |
| SizeIs(const SizeMatcher& size_matcher) { |
| return internal::SizeIsMatcher<SizeMatcher>(size_matcher); |
| } |
| |
| // Returns a matcher that matches an equal container. |
| // This matcher behaves like Eq(), but in the event of mismatch lists the |
| // values that are included in one container but not the other. (Duplicate |
| // values and order differences are not explained.) |
| template <typename Container> |
| inline PolymorphicMatcher<internal::ContainerEqMatcher< // NOLINT |
| GTEST_REMOVE_CONST_(Container)> > |
| ContainerEq(const Container& rhs) { |
| // This following line is for working around a bug in MSVC 8.0, |
| // which causes Container to be a const type sometimes. |
| typedef GTEST_REMOVE_CONST_(Container) RawContainer; |
| return MakePolymorphicMatcher( |
| internal::ContainerEqMatcher<RawContainer>(rhs)); |
| } |
| |
| // Returns a matcher that matches a container that, when sorted using |
| // the given comparator, matches container_matcher. |
| template <typename Comparator, typename ContainerMatcher> |
| inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> |
| WhenSortedBy(const Comparator& comparator, |
| const ContainerMatcher& container_matcher) { |
| return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( |
| comparator, container_matcher); |
| } |
| |
| // Returns a matcher that matches a container that, when sorted using |
| // the < operator, matches container_matcher. |
| template <typename ContainerMatcher> |
| inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> |
| WhenSorted(const ContainerMatcher& container_matcher) { |
| return |
| internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( |
| internal::LessComparator(), container_matcher); |
| } |
| |
| // Matches an STL-style container or a native array that contains the |
| // same number of elements as in rhs, where its i-th element and rhs's |
| // i-th element (as a pair) satisfy the given pair matcher, for all i. |
| // TupleMatcher must be able to be safely cast to Matcher<tuple<const |
| // T1&, const T2&> >, where T1 and T2 are the types of elements in the |
| // LHS container and the RHS container respectively. |
| template <typename TupleMatcher, typename Container> |
| inline internal::PointwiseMatcher<TupleMatcher, |
| GTEST_REMOVE_CONST_(Container)> |
| Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { |
| // This following line is for working around a bug in MSVC 8.0, |
| // which causes Container to be a const type sometimes. |
| typedef GTEST_REMOVE_CONST_(Container) RawContainer; |
| return internal::PointwiseMatcher<TupleMatcher, RawContainer>( |
| tuple_matcher, rhs); |
| } |
| |
| // Matches an STL-style container or a native array that contains at |
| // least one element matching the given value or matcher. |
| // |
| // Examples: |
| // ::std::set<int> page_ids; |
| // page_ids.insert(3); |
| // page_ids.insert(1); |
| // EXPECT_THAT(page_ids, Contains(1)); |
| // EXPECT_THAT(page_ids, Contains(Gt(2))); |
| // EXPECT_THAT(page_ids, Not(Contains(4))); |
| // |
| // ::std::map<int, size_t> page_lengths; |
| // page_lengths[1] = 100; |
| // EXPECT_THAT(page_lengths, |
| // Contains(::std::pair<const int, size_t>(1, 100))); |
| // |
| // const char* user_ids[] = { "joe", "mike", "tom" }; |
| // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
| template <typename M> |
| inline internal::ContainsMatcher<M> Contains(M matcher) { |
| return internal::ContainsMatcher<M>(matcher); |
| } |
| |
| // Matches an STL-style container or a native array that contains only |
| // elements matching the given value or matcher. |
| // |
| // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only |
| // the messages are different. |
| // |
| // Examples: |
| // ::std::set<int> page_ids; |
| // // Each(m) matches an empty container, regardless of what m is. |
| // EXPECT_THAT(page_ids, Each(Eq(1))); |
| // EXPECT_THAT(page_ids, Each(Eq(77))); |
| // |
| // page_ids.insert(3); |
| // EXPECT_THAT(page_ids, Each(Gt(0))); |
| // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); |
| // page_ids.insert(1); |
| // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); |
| // |
| // ::std::map<int, size_t> page_lengths; |
| // page_lengths[1] = 100; |
| // page_lengths[2] = 200; |
| // page_lengths[3] = 300; |
| // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); |
| // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); |
| // |
| // const char* user_ids[] = { "joe", "mike", "tom" }; |
| // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); |
| template <typename M> |
| inline internal::EachMatcher<M> Each(M matcher) { |
| return internal::EachMatcher<M>(matcher); |
| } |
| |
| // Key(inner_matcher) matches an std::pair whose 'first' field matches |
| // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
| // std::map that contains at least one element whose key is >= 5. |
| template <typename M> |
| inline internal::KeyMatcher<M> Key(M inner_matcher) { |
| return internal::KeyMatcher<M>(inner_matcher); |
| } |
| |
| // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
| // matches first_matcher and whose 'second' field matches second_matcher. For |
| // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
| // to match a std::map<int, string> that contains exactly one element whose key |
| // is >= 5 and whose value equals "foo". |
| template <typename FirstMatcher, typename SecondMatcher> |
| inline internal::PairMatcher<FirstMatcher, SecondMatcher> |
| Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { |
| return internal::PairMatcher<FirstMatcher, SecondMatcher>( |
| first_matcher, second_matcher); |
| } |
| |
| // Returns a predicate that is satisfied by anything that matches the |
| // given matcher. |
| template <typename M> |
| inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
| return internal::MatcherAsPredicate<M>(matcher); |
| } |
| |
| // Returns true iff the value matches the matcher. |
| template <typename T, typename M> |
| inline bool Value(const T& value, M matcher) { |
| return testing::Matches(matcher)(value); |
| } |
| |
| // Matches the value against the given matcher and explains the match |
| // result to listener. |
| template <typename T, typename M> |
| inline bool ExplainMatchResult( |
| M matcher, const T& value, MatchResultListener* listener) { |
| return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); |
| } |
| |
| #if GTEST_LANG_CXX11 |
| // Define variadic matcher versions. They are overloaded in |
| // gmock-generated-matchers.h for the cases supported by pre C++11 compilers. |
| template <typename... Args> |
| inline internal::AllOfMatcher<Args...> AllOf(const Args&... matchers) { |
| return internal::AllOfMatcher<Args...>(matchers...); |
| } |
| |
| template <typename... Args> |
| inline internal::AnyOfMatcher<Args...> AnyOf(const Args&... matchers) { |
| return internal::AnyOfMatcher<Args...>(matchers...); |
| } |
| |
| #endif // GTEST_LANG_CXX11 |
| |
| // AllArgs(m) is a synonym of m. This is useful in |
| // |
| // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
| // |
| // which is easier to read than |
| // |
| // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
| template <typename InnerMatcher> |
| inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } |
| |
| // These macros allow using matchers to check values in Google Test |
| // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
| // succeed iff the value matches the matcher. If the assertion fails, |
| // the value and the description of the matcher will be printed. |
| #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ |
| ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
| #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ |
| ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
| |
| } // namespace testing |
| |
| #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| |
| namespace testing { |
| |
| // An abstract handle of an expectation. |
| class Expectation; |
| |
| // A set of expectation handles. |
| class ExpectationSet; |
| |
| // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
| // and MUST NOT BE USED IN USER CODE!!! |
| namespace internal { |
| |
| // Implements a mock function. |
| template <typename F> class FunctionMocker; |
| |
| // Base class for expectations. |
| class ExpectationBase; |
| |
| // Implements an expectation. |
| template <typename F> class TypedExpectation; |
| |
| // Helper class for testing the Expectation class template. |
| class ExpectationTester; |
| |
| // Base class for function mockers. |
| template <typename F> class FunctionMockerBase; |
| |
| // Protects the mock object registry (in class Mock), all function |
| // mockers, and all expectations. |
| // |
| // The reason we don't use more fine-grained protection is: when a |
| // mock function Foo() is called, it needs to consult its expectations |
| // to see which one should be picked. If another thread is allowed to |
| // call a mock function (either Foo() or a different one) at the same |
| // time, it could affect the "retired" attributes of Foo()'s |
| // expectations when InSequence() is used, and thus affect which |
| // expectation gets picked. Therefore, we sequence all mock function |
| // calls to ensure the integrity of the mock objects' states. |
| GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex); |
| |
| // Untyped base class for ActionResultHolder<R>. |
| class UntypedActionResultHolderBase; |
| |
| // Abstract base class of FunctionMockerBase. This is the |
| // type-agnostic part of the function mocker interface. Its pure |
| // virtual methods are implemented by FunctionMockerBase. |
| class GTEST_API_ UntypedFunctionMockerBase { |
| public: |
| UntypedFunctionMockerBase(); |
| virtual ~UntypedFunctionMockerBase(); |
| |
| // Verifies that all expectations on this mock function have been |
| // satisfied. Reports one or more Google Test non-fatal failures |
| // and returns false if not. |
| bool VerifyAndClearExpectationsLocked() |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
| |
| // Clears the ON_CALL()s set on this mock function. |
| virtual void ClearDefaultActionsLocked() |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0; |
| |
| // In all of the following Untyped* functions, it's the caller's |
| // responsibility to guarantee the correctness of the arguments' |
| // types. |
| |
| // Performs the default action with the given arguments and returns |
| // the action's result. The call description string will be used in |
| // the error message to describe the call in the case the default |
| // action fails. |
| // L = * |
| virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction( |
| const void* untyped_args, |
| const string& call_description) const = 0; |
| |
| // Performs the given action with the given arguments and returns |
| // the action's result. |
| // L = * |
| virtual UntypedActionResultHolderBase* UntypedPerformAction( |
| const void* untyped_action, |
| const void* untyped_args) const = 0; |
| |
| // Writes a message that the call is uninteresting (i.e. neither |
| // explicitly expected nor explicitly unexpected) to the given |
| // ostream. |
| virtual void UntypedDescribeUninterestingCall( |
| const void* untyped_args, |
| ::std::ostream* os) const |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0; |
| |
| // Returns the expectation that matches the given function arguments |
| // (or NULL is there's no match); when a match is found, |
| // untyped_action is set to point to the action that should be |
| // performed (or NULL if the action is "do default"), and |
| // is_excessive is modified to indicate whether the call exceeds the |
| // expected number. |
| virtual const ExpectationBase* UntypedFindMatchingExpectation( |
| const void* untyped_args, |
| const void** untyped_action, bool* is_excessive, |
| ::std::ostream* what, ::std::ostream* why) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0; |
| |
| // Prints the given function arguments to the ostream. |
| virtual void UntypedPrintArgs(const void* untyped_args, |
| ::std::ostream* os) const = 0; |
| |
| // Sets the mock object this mock method belongs to, and registers |
| // this information in the global mock registry. Will be called |
| // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock |
| // method. |
| // TODO(wan@google.com): rename to SetAndRegisterOwner(). |
| void RegisterOwner(const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
| |
| // Sets the mock object this mock method belongs to, and sets the |
| // name of the mock function. Will be called upon each invocation |
| // of this mock function. |
| void SetOwnerAndName(const void* mock_obj, const char* name) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
| |
| // Returns the mock object this mock method belongs to. Must be |
| // called after RegisterOwner() or SetOwnerAndName() has been |
| // called. |
| const void* MockObject() const |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
| |
| // Returns the name of this mock method. Must be called after |
| // SetOwnerAndName() has been called. |
| const char* Name() const |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
| |
| // Returns the result of invoking this mock function with the given |
| // arguments. This function can be safely called from multiple |
| // threads concurrently. The caller is responsible for deleting the |
| // result. |
| UntypedActionResultHolderBase* UntypedInvokeWith( |
| const void* untyped_args) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex); |
| |
| protected: |
| typedef std::vector<const void*> UntypedOnCallSpecs; |
| |
| typedef std::vector<internal::linked_ptr<ExpectationBase> > |
| UntypedExpectations; |
| |
| // Returns an Expectation object that references and co-owns exp, |
| // which must be an expectation on this mock function. |
| Expectation GetHandleOf(ExpectationBase* exp); |
| |
| // Address of the mock object this mock method belongs to. Only |
| // valid after this mock method has been called or |
| // ON_CALL/EXPECT_CALL has been invoked on it. |
| const void* mock_obj_; // Protected by g_gmock_mutex. |
| |
| // Name of the function being mocked. Only valid after this mock |
| // method has been called. |
| const char* name_; // Protected by g_gmock_mutex. |
| |
| // All default action specs for this function mocker. |
| UntypedOnCallSpecs untyped_on_call_specs_; |
| |
| // All expectations for this function mocker. |
| UntypedExpectations untyped_expectations_; |
| }; // class UntypedFunctionMockerBase |
| |
| // Untyped base class for OnCallSpec<F>. |
| class UntypedOnCallSpecBase { |
| public: |
| // The arguments are the location of the ON_CALL() statement. |
| UntypedOnCallSpecBase(const char* a_file, int a_line) |
| : file_(a_file), line_(a_line), last_clause_(kNone) {} |
| |
| // Where in the source file was the default action spec defined? |
| const char* file() const { return file_; } |
| int line() const { return line_; } |
| |
| protected: |
| // Gives each clause in the ON_CALL() statement a name. |
| enum Clause { |
| // Do not change the order of the enum members! The run-time |
| // syntax checking relies on it. |
| kNone, |
| kWith, |
| kWillByDefault |
| }; |
| |
| // Asserts that the ON_CALL() statement has a certain property. |
| void AssertSpecProperty(bool property, const string& failure_message) const { |
| Assert(property, file_, line_, failure_message); |
| } |
| |
| // Expects that the ON_CALL() statement has a certain property. |
| void ExpectSpecProperty(bool property, const string& failure_message) const { |
| Expect(property, file_, line_, failure_message); |
| } |
| |
| const char* file_; |
| int line_; |
| |
| // The last clause in the ON_CALL() statement as seen so far. |
| // Initially kNone and changes as the statement is parsed. |
| Clause last_clause_; |
| }; // class UntypedOnCallSpecBase |
| |
| // This template class implements an ON_CALL spec. |
| template <typename F> |
| class OnCallSpec : public UntypedOnCallSpecBase { |
| public: |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; |
| |
| // Constructs an OnCallSpec object from the information inside |
| // the parenthesis of an ON_CALL() statement. |
| OnCallSpec(const char* a_file, int a_line, |
| const ArgumentMatcherTuple& matchers) |
| : UntypedOnCallSpecBase(a_file, a_line), |
| matchers_(matchers), |
| // By default, extra_matcher_ should match anything. However, |
| // we cannot initialize it with _ as that triggers a compiler |
| // bug in Symbian's C++ compiler (cannot decide between two |
| // overloaded constructors of Matcher<const ArgumentTuple&>). |
| extra_matcher_(A<const ArgumentTuple&>()) { |
| } |
| |
| // Implements the .With() clause. |
| OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) { |
| // Makes sure this is called at most once. |
| ExpectSpecProperty(last_clause_ < kWith, |
| ".With() cannot appear " |
| "more than once in an ON_CALL()."); |
| last_clause_ = kWith; |
| |
| extra_matcher_ = m; |
| return *this; |
| } |
| |
| // Implements the .WillByDefault() clause. |
| OnCallSpec& WillByDefault(const Action<F>& action) { |
| ExpectSpecProperty(last_clause_ < kWillByDefault, |
| ".WillByDefault() must appear " |
| "exactly once in an ON_CALL()."); |
| last_clause_ = kWillByDefault; |
| |
| ExpectSpecProperty(!action.IsDoDefault(), |
| "DoDefault() cannot be used in ON_CALL()."); |
| action_ = action; |
| return *this; |
| } |
| |
| // Returns true iff the given arguments match the matchers. |
| bool Matches(const ArgumentTuple& args) const { |
| return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); |
| } |
| |
| // Returns the action specified by the user. |
| const Action<F>& GetAction() const { |
| AssertSpecProperty(last_clause_ == kWillByDefault, |
| ".WillByDefault() must appear exactly " |
| "once in an ON_CALL()."); |
| return action_; |
| } |
| |
| private: |
| // The information in statement |
| // |
| // ON_CALL(mock_object, Method(matchers)) |
| // .With(multi-argument-matcher) |
| // .WillByDefault(action); |
| // |
| // is recorded in the data members like this: |
| // |
| // source file that contains the statement => file_ |
| // line number of the statement => line_ |
| // matchers => matchers_ |
| // multi-argument-matcher => extra_matcher_ |
| // action => action_ |
| ArgumentMatcherTuple matchers_; |
| Matcher<const ArgumentTuple&> extra_matcher_; |
| Action<F> action_; |
| }; // class OnCallSpec |
| |
| // Possible reactions on uninteresting calls. |
| enum CallReaction { |
| kAllow, |
| kWarn, |
| kFail, |
| kDefault = kWarn // By default, warn about uninteresting calls. |
| }; |
| |
| } // namespace internal |
| |
| // Utilities for manipulating mock objects. |
| class GTEST_API_ Mock { |
| public: |
| // The following public methods can be called concurrently. |
| |
| // Tells Google Mock to ignore mock_obj when checking for leaked |
| // mock objects. |
| static void AllowLeak(const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Verifies and clears all expectations on the given mock object. |
| // If the expectations aren't satisfied, generates one or more |
| // Google Test non-fatal failures and returns false. |
| static bool VerifyAndClearExpectations(void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Verifies all expectations on the given mock object and clears its |
| // default actions and expectations. Returns true iff the |
| // verification was successful. |
| static bool VerifyAndClear(void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| private: |
| friend class internal::UntypedFunctionMockerBase; |
| |
| // Needed for a function mocker to register itself (so that we know |
| // how to clear a mock object). |
| template <typename F> |
| friend class internal::FunctionMockerBase; |
| |
| template <typename M> |
| friend class NiceMock; |
| |
| template <typename M> |
| friend class NaggyMock; |
| |
| template <typename M> |
| friend class StrictMock; |
| |
| // Tells Google Mock to allow uninteresting calls on the given mock |
| // object. |
| static void AllowUninterestingCalls(const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Tells Google Mock to warn the user about uninteresting calls on |
| // the given mock object. |
| static void WarnUninterestingCalls(const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Tells Google Mock to fail uninteresting calls on the given mock |
| // object. |
| static void FailUninterestingCalls(const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Tells Google Mock the given mock object is being destroyed and |
| // its entry in the call-reaction table should be removed. |
| static void UnregisterCallReaction(const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Returns the reaction Google Mock will have on uninteresting calls |
| // made on the given mock object. |
| static internal::CallReaction GetReactionOnUninterestingCalls( |
| const void* mock_obj) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Verifies that all expectations on the given mock object have been |
| // satisfied. Reports one or more Google Test non-fatal failures |
| // and returns false if not. |
| static bool VerifyAndClearExpectationsLocked(void* mock_obj) |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); |
| |
| // Clears all ON_CALL()s set on the given mock object. |
| static void ClearDefaultActionsLocked(void* mock_obj) |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); |
| |
| // Registers a mock object and a mock method it owns. |
| static void Register( |
| const void* mock_obj, |
| internal::UntypedFunctionMockerBase* mocker) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Tells Google Mock where in the source code mock_obj is used in an |
| // ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this |
| // information helps the user identify which object it is. |
| static void RegisterUseByOnCallOrExpectCall( |
| const void* mock_obj, const char* file, int line) |
| GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); |
| |
| // Unregisters a mock method; removes the owning mock object from |
| // the registry when the last mock method associated with it has |
| // been unregistered. This is called only in the destructor of |
| // FunctionMockerBase. |
| static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker) |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); |
| }; // class Mock |
| |
| // An abstract handle of an expectation. Useful in the .After() |
| // clause of EXPECT_CALL() for setting the (partial) order of |
| // expectations. The syntax: |
| // |
| // Expectation e1 = EXPECT_CALL(...)...; |
| // EXPECT_CALL(...).After(e1)...; |
| // |
| // sets two expectations where the latter can only be matched after |
| // the former has been satisfied. |
| // |
| // Notes: |
| // - This class is copyable and has value semantics. |
| // - Constness is shallow: a const Expectation object itself cannot |
| // be modified, but the mutable methods of the ExpectationBase |
| // object it references can be called via expectation_base(). |
| // - The constructors and destructor are defined out-of-line because |
| // the Symbian WINSCW compiler wants to otherwise instantiate them |
| // when it sees this class definition, at which point it doesn't have |
| // ExpectationBase available yet, leading to incorrect destruction |
| // in the linked_ptr (or compilation errors if using a checking |
| // linked_ptr). |
| class GTEST_API_ Expectation { |
| public: |
| // Constructs a null object that doesn't reference any expectation. |
| Expectation(); |
| |
| ~Expectation(); |
| |
| // This single-argument ctor must not be explicit, in order to support the |
| // Expectation e = EXPECT_CALL(...); |
| // syntax. |
| // |
| // A TypedExpectation object stores its pre-requisites as |
| // Expectation objects, and needs to call the non-const Retire() |
| // method on the ExpectationBase objects they reference. Therefore |
| // Expectation must receive a *non-const* reference to the |
| // ExpectationBase object. |
| Expectation(internal::ExpectationBase& exp); // NOLINT |
| |
| // The compiler-generated copy ctor and operator= work exactly as |
| // intended, so we don't need to define our own. |
| |
| // Returns true iff rhs references the same expectation as this object does. |
| bool operator==(const Expectation& rhs) const { |
| return expectation_base_ == rhs.expectation_base_; |
| } |
| |
| bool operator!=(const Expectation& rhs) const { return !(*this == rhs); } |
| |
| private: |
| friend class ExpectationSet; |
| friend class Sequence; |
| friend class ::testing::internal::ExpectationBase; |
| friend class ::testing::internal::UntypedFunctionMockerBase; |
| |
| template <typename F> |
| friend class ::testing::internal::FunctionMockerBase; |
| |
| template <typename F> |
| friend class ::testing::internal::TypedExpectation; |
| |
| // This comparator is needed for putting Expectation objects into a set. |
| class Less { |
| public: |
| bool operator()(const Expectation& lhs, const Expectation& rhs) const { |
| return lhs.expectation_base_.get() < rhs.expectation_base_.get(); |
| } |
| }; |
| |
| typedef ::std::set<Expectation, Less> Set; |
| |
| Expectation( |
| const internal::linked_ptr<internal::ExpectationBase>& expectation_base); |
| |
| // Returns the expectation this object references. |
| const internal::linked_ptr<internal::ExpectationBase>& |
| expectation_base() const { |
| return expectation_base_; |
| } |
| |
| // A linked_ptr that co-owns the expectation this handle references. |
| internal::linked_ptr<internal::ExpectationBase> expectation_base_; |
| }; |
| |
| // A set of expectation handles. Useful in the .After() clause of |
| // EXPECT_CALL() for setting the (partial) order of expectations. The |
| // syntax: |
| // |
| // ExpectationSet es; |
| // es += EXPECT_CALL(...)...; |
| // es += EXPECT_CALL(...)...; |
| // EXPECT_CALL(...).After(es)...; |
| // |
| // sets three expectations where the last one can only be matched |
| // after the first two have both been satisfied. |
| // |
| // This class is copyable and has value semantics. |
| class ExpectationSet { |
| public: |
| // A bidirectional iterator that can read a const element in the set. |
| typedef Expectation::Set::const_iterator const_iterator; |
| |
| // An object stored in the set. This is an alias of Expectation. |
| typedef Expectation::Set::value_type value_type; |
| |
| // Constructs an empty set. |
| ExpectationSet() {} |
| |
| // This single-argument ctor must not be explicit, in order to support the |
| // ExpectationSet es = EXPECT_CALL(...); |
| // syntax. |
| ExpectationSet(internal::ExpectationBase& exp) { // NOLINT |
| *this += Expectation(exp); |
| } |
| |
| // This single-argument ctor implements implicit conversion from |
| // Expectation and thus must not be explicit. This allows either an |
| // Expectation or an ExpectationSet to be used in .After(). |
| ExpectationSet(const Expectation& e) { // NOLINT |
| *this += e; |
| } |
| |
| // The compiler-generator ctor and operator= works exactly as |
| // intended, so we don't need to define our own. |
| |
| // Returns true iff rhs contains the same set of Expectation objects |
| // as this does. |
| bool operator==(const ExpectationSet& rhs) const { |
| return expectations_ == rhs.expectations_; |
| } |
| |
| bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); } |
| |
| // Implements the syntax |
| // expectation_set += EXPECT_CALL(...); |
| ExpectationSet& operator+=(const Expectation& e) { |
| expectations_.insert(e); |
| return *this; |
| } |
| |
| int size() const { return static_cast<int>(expectations_.size()); } |
| |
| const_iterator begin() const { return expectations_.begin(); } |
| const_iterator end() const { return expectations_.end(); } |
| |
| private: |
| Expectation::Set expectations_; |
| }; |
| |
| |
| // Sequence objects are used by a user to specify the relative order |
| // in which the expectations should match. They are copyable (we rely |
| // on the compiler-defined copy constructor and assignment operator). |
| class GTEST_API_ Sequence { |
| public: |
| // Constructs an empty sequence. |
| Sequence() : last_expectation_(new Expectation) {} |
| |
| // Adds an expectation to this sequence. The caller must ensure |
| // that no other thread is accessing this Sequence object. |
| void AddExpectation(const Expectation& expectation) const; |
| |
| private: |
| // The last expectation in this sequence. We use a linked_ptr here |
| // because Sequence objects are copyable and we want the copies to |
| // be aliases. The linked_ptr allows the copies to co-own and share |
| // the same Expectation object. |
| internal::linked_ptr<Expectation> last_expectation_; |
| }; // class Sequence |
| |
| // An object of this type causes all EXPECT_CALL() statements |
| // encountered in its scope to be put in an anonymous sequence. The |
| // work is done in the constructor and destructor. You should only |
| // create an InSequence object on the stack. |
| // |
| // The sole purpose for this class is to support easy definition of |
| // sequential expectations, e.g. |
| // |
| // { |
| // InSequence dummy; // The name of the object doesn't matter. |
| // |
| // // The following expectations must match in the order they appear. |
| // EXPECT_CALL(a, Bar())...; |
| // EXPECT_CALL(a, Baz())...; |
| // ... |
| // EXPECT_CALL(b, Xyz())...; |
| // } |
| // |
| // You can create InSequence objects in multiple threads, as long as |
| // they are used to affect different mock objects. The idea is that |
| // each thread can create and set up its own mocks as if it's the only |
| // thread. However, for clarity of your tests we recommend you to set |
| // up mocks in the main thread unless you have a good reason not to do |
| // so. |
| class GTEST_API_ InSequence { |
| public: |
| InSequence(); |
| ~InSequence(); |
| private: |
| bool sequence_created_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence); // NOLINT |
| } GTEST_ATTRIBUTE_UNUSED_; |
| |
| namespace internal { |
| |
| // Points to the implicit sequence introduced by a living InSequence |
| // object (if any) in the current thread or NULL. |
| GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence; |
| |
| // Base class for implementing expectations. |
| // |
| // There are two reasons for having a type-agnostic base class for |
| // Expectation: |
| // |
| // 1. We need to store collections of expectations of different |
| // types (e.g. all pre-requisites of a particular expectation, all |
| // expectations in a sequence). Therefore these expectation objects |
| // must share a common base class. |
| // |
| // 2. We can avoid binary code bloat by moving methods not depending |
| // on the template argument of Expectation to the base class. |
| // |
| // This class is internal and mustn't be used by user code directly. |
| class GTEST_API_ ExpectationBase { |
| public: |
| // source_text is the EXPECT_CALL(...) source that created this Expectation. |
| ExpectationBase(const char* file, int line, const string& source_text); |
| |
| virtual ~ExpectationBase(); |
| |
| // Where in the source file was the expectation spec defined? |
| const char* file() const { return file_; } |
| int line() const { return line_; } |
| const char* source_text() const { return source_text_.c_str(); } |
| // Returns the cardinality specified in the expectation spec. |
| const Cardinality& cardinality() const { return cardinality_; } |
| |
| // Describes the source file location of this expectation. |
| void DescribeLocationTo(::std::ostream* os) const { |
| *os << FormatFileLocation(file(), line()) << " "; |
| } |
| |
| // Describes how many times a function call matching this |
| // expectation has occurred. |
| void DescribeCallCountTo(::std::ostream* os) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
| |
| // If this mock method has an extra matcher (i.e. .With(matcher)), |
| // describes it to the ostream. |
| virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0; |
| |
| protected: |
| friend class ::testing::Expectation; |
| friend class UntypedFunctionMockerBase; |
| |
| enum Clause { |
| // Don't change the order of the enum members! |
| kNone, |
| kWith, |
| kTimes, |
| kInSequence, |
| kAfter, |
| kWillOnce, |
| kWillRepeatedly, |
| kRetiresOnSaturation |
| }; |
| |
| typedef std::vector<const void*> UntypedActions; |
| |
| // Returns an Expectation object that references and co-owns this |
| // expectation. |
| virtual Expectation GetHandle() = 0; |
| |
| // Asserts that the EXPECT_CALL() statement has the given property. |
| void AssertSpecProperty(bool property, const string& failure_message) const { |
| Assert(property, file_, line_, failure_message); |
| } |
| |
| // Expects that the EXPECT_CALL() statement has the given property. |
| void ExpectSpecProperty(bool property, const string& failure_message) const { |
| Expect(property, file_, line_, failure_message); |
| } |
| |
| // Explicitly specifies the cardinality of this expectation. Used |
| // by the subclasses to implement the .Times() clause. |
| void SpecifyCardinality(const Cardinality& cardinality); |
| |
| // Returns true iff the user specified the cardinality explicitly |
| // using a .Times(). |
| bool cardinality_specified() const { return cardinality_specified_; } |
| |
| // Sets the cardinality of this expectation spec. |
| void set_cardinality(const Cardinality& a_cardinality) { |
| cardinality_ = a_cardinality; |
| } |
| |
| // The following group of methods should only be called after the |
| // EXPECT_CALL() statement, and only when g_gmock_mutex is held by |
| // the current thread. |
| |
| // Retires all pre-requisites of this expectation. |
| void RetireAllPreRequisites() |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
| |
| // Returns true iff this expectation is retired. |
| bool is_retired() const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| return retired_; |
| } |
| |
| // Retires this expectation. |
| void Retire() |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| retired_ = true; |
| } |
| |
| // Returns true iff this expectation is satisfied. |
| bool IsSatisfied() const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| return cardinality().IsSatisfiedByCallCount(call_count_); |
| } |
| |
| // Returns true iff this expectation is saturated. |
| bool IsSaturated() const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| return cardinality().IsSaturatedByCallCount(call_count_); |
| } |
| |
| // Returns true iff this expectation is over-saturated. |
| bool IsOverSaturated() const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| return cardinality().IsOverSaturatedByCallCount(call_count_); |
| } |
| |
| // Returns true iff all pre-requisites of this expectation are satisfied. |
| bool AllPrerequisitesAreSatisfied() const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
| |
| // Adds unsatisfied pre-requisites of this expectation to 'result'. |
| void FindUnsatisfiedPrerequisites(ExpectationSet* result) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); |
| |
| // Returns the number this expectation has been invoked. |
| int call_count() const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| return call_count_; |
| } |
| |
| // Increments the number this expectation has been invoked. |
| void IncrementCallCount() |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| call_count_++; |
| } |
| |
| // Checks the action count (i.e. the number of WillOnce() and |
| // WillRepeatedly() clauses) against the cardinality if this hasn't |
| // been done before. Prints a warning if there are too many or too |
| // few actions. |
| void CheckActionCountIfNotDone() const |
| GTEST_LOCK_EXCLUDED_(mutex_); |
| |
| friend class ::testing::Sequence; |
| friend class ::testing::internal::ExpectationTester; |
| |
| template <typename Function> |
| friend class TypedExpectation; |
| |
| // Implements the .Times() clause. |
| void UntypedTimes(const Cardinality& a_cardinality); |
| |
| // This group of fields are part of the spec and won't change after |
| // an EXPECT_CALL() statement finishes. |
| const char* file_; // The file that contains the expectation. |
| int line_; // The line number of the expectation. |
| const string source_text_; // The EXPECT_CALL(...) source text. |
| // True iff the cardinality is specified explicitly. |
| bool cardinality_specified_; |
| Cardinality cardinality_; // The cardinality of the expectation. |
| // The immediate pre-requisites (i.e. expectations that must be |
| // satisfied before this expectation can be matched) of this |
| // expectation. We use linked_ptr in the set because we want an |
| // Expectation object to be co-owned by its FunctionMocker and its |
| // successors. This allows multiple mock objects to be deleted at |
| // different times. |
| ExpectationSet immediate_prerequisites_; |
| |
| // This group of fields are the current state of the expectation, |
| // and can change as the mock function is called. |
| int call_count_; // How many times this expectation has been invoked. |
| bool retired_; // True iff this expectation has retired. |
| UntypedActions untyped_actions_; |
| bool extra_matcher_specified_; |
| bool repeated_action_specified_; // True if a WillRepeatedly() was specified. |
| bool retires_on_saturation_; |
| Clause last_clause_; |
| mutable bool action_count_checked_; // Under mutex_. |
| mutable Mutex mutex_; // Protects action_count_checked_. |
| |
| GTEST_DISALLOW_ASSIGN_(ExpectationBase); |
| }; // class ExpectationBase |
| |
| // Impements an expectation for the given function type. |
| template <typename F> |
| class TypedExpectation : public ExpectationBase { |
| public: |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; |
| typedef typename Function<F>::Result Result; |
| |
| TypedExpectation(FunctionMockerBase<F>* owner, |
| const char* a_file, int a_line, const string& a_source_text, |
| const ArgumentMatcherTuple& m) |
| : ExpectationBase(a_file, a_line, a_source_text), |
| owner_(owner), |
| matchers_(m), |
| // By default, extra_matcher_ should match anything. However, |
| // we cannot initialize it with _ as that triggers a compiler |
| // bug in Symbian's C++ compiler (cannot decide between two |
| // overloaded constructors of Matcher<const ArgumentTuple&>). |
| extra_matcher_(A<const ArgumentTuple&>()), |
| repeated_action_(DoDefault()) {} |
| |
| virtual ~TypedExpectation() { |
| // Check the validity of the action count if it hasn't been done |
| // yet (for example, if the expectation was never used). |
| CheckActionCountIfNotDone(); |
| for (UntypedActions::const_iterator it = untyped_actions_.begin(); |
| it != untyped_actions_.end(); ++it) { |
| delete static_cast<const Action<F>*>(*it); |
| } |
| } |
| |
| // Implements the .With() clause. |
| TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) { |
| if (last_clause_ == kWith) { |
| ExpectSpecProperty(false, |
| ".With() cannot appear " |
| "more than once in an EXPECT_CALL()."); |
| } else { |
| ExpectSpecProperty(last_clause_ < kWith, |
| ".With() must be the first " |
| "clause in an EXPECT_CALL()."); |
| } |
| last_clause_ = kWith; |
| |
| extra_matcher_ = m; |
| extra_matcher_specified_ = true; |
| return *this; |
| } |
| |
| // Implements the .Times() clause. |
| TypedExpectation& Times(const Cardinality& a_cardinality) { |
| ExpectationBase::UntypedTimes(a_cardinality); |
| return *this; |
| } |
| |
| // Implements the .Times() clause. |
| TypedExpectation& Times(int n) { |
| return Times(Exactly(n)); |
| } |
| |
| // Implements the .InSequence() clause. |
| TypedExpectation& InSequence(const Sequence& s) { |
| ExpectSpecProperty(last_clause_ <= kInSequence, |
| ".InSequence() cannot appear after .After()," |
| " .WillOnce(), .WillRepeatedly(), or " |
| ".RetiresOnSaturation()."); |
| last_clause_ = kInSequence; |
| |
| s.AddExpectation(GetHandle()); |
| return *this; |
| } |
| TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) { |
| return InSequence(s1).InSequence(s2); |
| } |
| TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, |
| const Sequence& s3) { |
| return InSequence(s1, s2).InSequence(s3); |
| } |
| TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, |
| const Sequence& s3, const Sequence& s4) { |
| return InSequence(s1, s2, s3).InSequence(s4); |
| } |
| TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, |
| const Sequence& s3, const Sequence& s4, |
| const Sequence& s5) { |
| return InSequence(s1, s2, s3, s4).InSequence(s5); |
| } |
| |
| // Implements that .After() clause. |
| TypedExpectation& After(const ExpectationSet& s) { |
| ExpectSpecProperty(last_clause_ <= kAfter, |
| ".After() cannot appear after .WillOnce()," |
| " .WillRepeatedly(), or " |
| ".RetiresOnSaturation()."); |
| last_clause_ = kAfter; |
| |
| for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) { |
| immediate_prerequisites_ += *it; |
| } |
| return *this; |
| } |
| TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) { |
| return After(s1).After(s2); |
| } |
| TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, |
| const ExpectationSet& s3) { |
| return After(s1, s2).After(s3); |
| } |
| TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, |
| const ExpectationSet& s3, const ExpectationSet& s4) { |
| return After(s1, s2, s3).After(s4); |
| } |
| TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, |
| const ExpectationSet& s3, const ExpectationSet& s4, |
| const ExpectationSet& s5) { |
| return After(s1, s2, s3, s4).After(s5); |
| } |
| |
| // Implements the .WillOnce() clause. |
| TypedExpectation& WillOnce(const Action<F>& action) { |
| ExpectSpecProperty(last_clause_ <= kWillOnce, |
| ".WillOnce() cannot appear after " |
| ".WillRepeatedly() or .RetiresOnSaturation()."); |
| last_clause_ = kWillOnce; |
| |
| untyped_actions_.push_back(new Action<F>(action)); |
| if (!cardinality_specified()) { |
| set_cardinality(Exactly(static_cast<int>(untyped_actions_.size()))); |
| } |
| return *this; |
| } |
| |
| // Implements the .WillRepeatedly() clause. |
| TypedExpectation& WillRepeatedly(const Action<F>& action) { |
| if (last_clause_ == kWillRepeatedly) { |
| ExpectSpecProperty(false, |
| ".WillRepeatedly() cannot appear " |
| "more than once in an EXPECT_CALL()."); |
| } else { |
| ExpectSpecProperty(last_clause_ < kWillRepeatedly, |
| ".WillRepeatedly() cannot appear " |
| "after .RetiresOnSaturation()."); |
| } |
| last_clause_ = kWillRepeatedly; |
| repeated_action_specified_ = true; |
| |
| repeated_action_ = action; |
| if (!cardinality_specified()) { |
| set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size()))); |
| } |
| |
| // Now that no more action clauses can be specified, we check |
| // whether their count makes sense. |
| CheckActionCountIfNotDone(); |
| return *this; |
| } |
| |
| // Implements the .RetiresOnSaturation() clause. |
| TypedExpectation& RetiresOnSaturation() { |
| ExpectSpecProperty(last_clause_ < kRetiresOnSaturation, |
| ".RetiresOnSaturation() cannot appear " |
| "more than once."); |
| last_clause_ = kRetiresOnSaturation; |
| retires_on_saturation_ = true; |
| |
| // Now that no more action clauses can be specified, we check |
| // whether their count makes sense. |
| CheckActionCountIfNotDone(); |
| return *this; |
| } |
| |
| // Returns the matchers for the arguments as specified inside the |
| // EXPECT_CALL() macro. |
| const ArgumentMatcherTuple& matchers() const { |
| return matchers_; |
| } |
| |
| // Returns the matcher specified by the .With() clause. |
| const Matcher<const ArgumentTuple&>& extra_matcher() const { |
| return extra_matcher_; |
| } |
| |
| // Returns the action specified by the .WillRepeatedly() clause. |
| const Action<F>& repeated_action() const { return repeated_action_; } |
| |
| // If this mock method has an extra matcher (i.e. .With(matcher)), |
| // describes it to the ostream. |
| virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) { |
| if (extra_matcher_specified_) { |
| *os << " Expected args: "; |
| extra_matcher_.DescribeTo(os); |
| *os << "\n"; |
| } |
| } |
| |
| private: |
| template <typename Function> |
| friend class FunctionMockerBase; |
| |
| // Returns an Expectation object that references and co-owns this |
| // expectation. |
| virtual Expectation GetHandle() { |
| return owner_->GetHandleOf(this); |
| } |
| |
| // The following methods will be called only after the EXPECT_CALL() |
| // statement finishes and when the current thread holds |
| // g_gmock_mutex. |
| |
| // Returns true iff this expectation matches the given arguments. |
| bool Matches(const ArgumentTuple& args) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); |
| } |
| |
| // Returns true iff this expectation should handle the given arguments. |
| bool ShouldHandleArguments(const ArgumentTuple& args) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| |
| // In case the action count wasn't checked when the expectation |
| // was defined (e.g. if this expectation has no WillRepeatedly() |
| // or RetiresOnSaturation() clause), we check it when the |
| // expectation is used for the first time. |
| CheckActionCountIfNotDone(); |
| return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args); |
| } |
| |
| // Describes the result of matching the arguments against this |
| // expectation to the given ostream. |
| void ExplainMatchResultTo( |
| const ArgumentTuple& args, |
| ::std::ostream* os) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| |
| if (is_retired()) { |
| *os << " Expected: the expectation is active\n" |
| << " Actual: it is retired\n"; |
| } else if (!Matches(args)) { |
| if (!TupleMatches(matchers_, args)) { |
| ExplainMatchFailureTupleTo(matchers_, args, os); |
| } |
| StringMatchResultListener listener; |
| if (!extra_matcher_.MatchAndExplain(args, &listener)) { |
| *os << " Expected args: "; |
| extra_matcher_.DescribeTo(os); |
| *os << "\n Actual: don't match"; |
| |
| internal::PrintIfNotEmpty(listener.str(), os); |
| *os << "\n"; |
| } |
| } else if (!AllPrerequisitesAreSatisfied()) { |
| *os << " Expected: all pre-requisites are satisfied\n" |
| << " Actual: the following immediate pre-requisites " |
| << "are not satisfied:\n"; |
| ExpectationSet unsatisfied_prereqs; |
| FindUnsatisfiedPrerequisites(&unsatisfied_prereqs); |
| int i = 0; |
| for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin(); |
| it != unsatisfied_prereqs.end(); ++it) { |
| it->expectation_base()->DescribeLocationTo(os); |
| *os << "pre-requisite #" << i++ << "\n"; |
| } |
| *os << " (end of pre-requisites)\n"; |
| } else { |
| // This line is here just for completeness' sake. It will never |
| // be executed as currently the ExplainMatchResultTo() function |
| // is called only when the mock function call does NOT match the |
| // expectation. |
| *os << "The call matches the expectation.\n"; |
| } |
| } |
| |
| // Returns the action that should be taken for the current invocation. |
| const Action<F>& GetCurrentAction( |
| const FunctionMockerBase<F>* mocker, |
| const ArgumentTuple& args) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| const int count = call_count(); |
| Assert(count >= 1, __FILE__, __LINE__, |
| "call_count() is <= 0 when GetCurrentAction() is " |
| "called - this should never happen."); |
| |
| const int action_count = static_cast<int>(untyped_actions_.size()); |
| if (action_count > 0 && !repeated_action_specified_ && |
| count > action_count) { |
| // If there is at least one WillOnce() and no WillRepeatedly(), |
| // we warn the user when the WillOnce() clauses ran out. |
| ::std::stringstream ss; |
| DescribeLocationTo(&ss); |
| ss << "Actions ran out in " << source_text() << "...\n" |
| << "Called " << count << " times, but only " |
| << action_count << " WillOnce()" |
| << (action_count == 1 ? " is" : "s are") << " specified - "; |
| mocker->DescribeDefaultActionTo(args, &ss); |
| Log(kWarning, ss.str(), 1); |
| } |
| |
| return count <= action_count ? |
| *static_cast<const Action<F>*>(untyped_actions_[count - 1]) : |
| repeated_action(); |
| } |
| |
| // Given the arguments of a mock function call, if the call will |
| // over-saturate this expectation, returns the default action; |
| // otherwise, returns the next action in this expectation. Also |
| // describes *what* happened to 'what', and explains *why* Google |
| // Mock does it to 'why'. This method is not const as it calls |
| // IncrementCallCount(). A return value of NULL means the default |
| // action. |
| const Action<F>* GetActionForArguments( |
| const FunctionMockerBase<F>* mocker, |
| const ArgumentTuple& args, |
| ::std::ostream* what, |
| ::std::ostream* why) |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| if (IsSaturated()) { |
| // We have an excessive call. |
| IncrementCallCount(); |
| *what << "Mock function called more times than expected - "; |
| mocker->DescribeDefaultActionTo(args, what); |
| DescribeCallCountTo(why); |
| |
| // TODO(wan@google.com): allow the user to control whether |
| // unexpected calls should fail immediately or continue using a |
| // flag --gmock_unexpected_calls_are_fatal. |
| return NULL; |
| } |
| |
| IncrementCallCount(); |
| RetireAllPreRequisites(); |
| |
| if (retires_on_saturation_ && IsSaturated()) { |
| Retire(); |
| } |
| |
| // Must be done after IncrementCount()! |
| *what << "Mock function call matches " << source_text() <<"...\n"; |
| return &(GetCurrentAction(mocker, args)); |
| } |
| |
| // All the fields below won't change once the EXPECT_CALL() |
| // statement finishes. |
| FunctionMockerBase<F>* const owner_; |
| ArgumentMatcherTuple matchers_; |
| Matcher<const ArgumentTuple&> extra_matcher_; |
| Action<F> repeated_action_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation); |
| }; // class TypedExpectation |
| |
| // A MockSpec object is used by ON_CALL() or EXPECT_CALL() for |
| // specifying the default behavior of, or expectation on, a mock |
| // function. |
| |
| // Note: class MockSpec really belongs to the ::testing namespace. |
| // However if we define it in ::testing, MSVC will complain when |
| // classes in ::testing::internal declare it as a friend class |
| // template. To workaround this compiler bug, we define MockSpec in |
| // ::testing::internal and import it into ::testing. |
| |
| // Logs a message including file and line number information. |
| GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity, |
| const char* file, int line, |
| const string& message); |
| |
| template <typename F> |
| class MockSpec { |
| public: |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| typedef typename internal::Function<F>::ArgumentMatcherTuple |
| ArgumentMatcherTuple; |
| |
| // Constructs a MockSpec object, given the function mocker object |
| // that the spec is associated with. |
| explicit MockSpec(internal::FunctionMockerBase<F>* function_mocker) |
| : function_mocker_(function_mocker) {} |
| |
| // Adds a new default action spec to the function mocker and returns |
| // the newly created spec. |
| internal::OnCallSpec<F>& InternalDefaultActionSetAt( |
| const char* file, int line, const char* obj, const char* call) { |
| LogWithLocation(internal::kInfo, file, line, |
| string("ON_CALL(") + obj + ", " + call + ") invoked"); |
| return function_mocker_->AddNewOnCallSpec(file, line, matchers_); |
| } |
| |
| // Adds a new expectation spec to the function mocker and returns |
| // the newly created spec. |
| internal::TypedExpectation<F>& InternalExpectedAt( |
| const char* file, int line, const char* obj, const char* call) { |
| const string source_text(string("EXPECT_CALL(") + obj + ", " + call + ")"); |
| LogWithLocation(internal::kInfo, file, line, source_text + " invoked"); |
| return function_mocker_->AddNewExpectation( |
| file, line, source_text, matchers_); |
| } |
| |
| private: |
| template <typename Function> |
| friend class internal::FunctionMocker; |
| |
| void SetMatchers(const ArgumentMatcherTuple& matchers) { |
| matchers_ = matchers; |
| } |
| |
| // The function mocker that owns this spec. |
| internal::FunctionMockerBase<F>* const function_mocker_; |
| // The argument matchers specified in the spec. |
| ArgumentMatcherTuple matchers_; |
| |
| GTEST_DISALLOW_ASSIGN_(MockSpec); |
| }; // class MockSpec |
| |
| // Wrapper type for generically holding an ordinary value or lvalue reference. |
| // If T is not a reference type, it must be copyable or movable. |
| // ReferenceOrValueWrapper<T> is movable, and will also be copyable unless |
| // T is a move-only value type (which means that it will always be copyable |
| // if the current platform does not support move semantics). |
| // |
| // The primary template defines handling for values, but function header |
| // comments describe the contract for the whole template (including |
| // specializations). |
| template <typename T> |
| class ReferenceOrValueWrapper { |
| public: |
| // Constructs a wrapper from the given value/reference. |
| explicit ReferenceOrValueWrapper(T value) |
| : value_(GTEST_MOVE_(value)) {} |
| |
| // Unwraps and returns the underlying value/reference, exactly as |
| // originally passed. The behavior of calling this more than once on |
| // the same object is unspecified. |
| T Unwrap() { |
| return GTEST_MOVE_(value_); |
| } |
| |
| // Provides nondestructive access to the underlying value/reference. |
| // Always returns a const reference (more precisely, |
| // const RemoveReference<T>&). The behavior of calling this after |
| // calling Unwrap on the same object is unspecified. |
| const T& Peek() const { |
| return value_; |
| } |
| |
| private: |
| T value_; |
| }; |
| |
| // Specialization for lvalue reference types. See primary template |
| // for documentation. |
| template <typename T> |
| class ReferenceOrValueWrapper<T&> { |
| public: |
| // Workaround for debatable pass-by-reference lint warning (c-library-team |
| // policy precludes NOLINT in this context) |
| typedef T& reference; |
| explicit ReferenceOrValueWrapper(reference ref) |
| : value_ptr_(&ref) {} |
| T& Unwrap() { return *value_ptr_; } |
| const T& Peek() const { return *value_ptr_; } |
| |
| private: |
| T* value_ptr_; |
| }; |
| |
| // MSVC warns about using 'this' in base member initializer list, so |
| // we need to temporarily disable the warning. We have to do it for |
| // the entire class to suppress the warning, even though it's about |
| // the constructor only. |
| |
| #ifdef _MSC_VER |
| # pragma warning(push) // Saves the current warning state. |
| # pragma warning(disable:4355) // Temporarily disables warning 4355. |
| #endif // _MSV_VER |
| |
| // C++ treats the void type specially. For example, you cannot define |
| // a void-typed variable or pass a void value to a function. |
| // ActionResultHolder<T> holds a value of type T, where T must be a |
| // copyable type or void (T doesn't need to be default-constructable). |
| // It hides the syntactic difference between void and other types, and |
| // is used to unify the code for invoking both void-returning and |
| // non-void-returning mock functions. |
| |
| // Untyped base class for ActionResultHolder<T>. |
| class UntypedActionResultHolderBase { |
| public: |
| virtual ~UntypedActionResultHolderBase() {} |
| |
| // Prints the held value as an action's result to os. |
| virtual void PrintAsActionResult(::std::ostream* os) const = 0; |
| }; |
| |
| // This generic definition is used when T is not void. |
| template <typename T> |
| class ActionResultHolder : public UntypedActionResultHolderBase { |
| public: |
| // Returns the held value. Must not be called more than once. |
| T Unwrap() { |
| return result_.Unwrap(); |
| } |
| |
| // Prints the held value as an action's result to os. |
| virtual void PrintAsActionResult(::std::ostream* os) const { |
| *os << "\n Returns: "; |
| // T may be a reference type, so we don't use UniversalPrint(). |
| UniversalPrinter<T>::Print(result_.Peek(), os); |
| } |
| |
| // Performs the given mock function's default action and returns the |
| // result in a new-ed ActionResultHolder. |
| template <typename F> |
| static ActionResultHolder* PerformDefaultAction( |
| const FunctionMockerBase<F>* func_mocker, |
| const typename Function<F>::ArgumentTuple& args, |
| const string& call_description) { |
| return new ActionResultHolder(Wrapper( |
| func_mocker->PerformDefaultAction(args, call_description))); |
| } |
| |
| // Performs the given action and returns the result in a new-ed |
| // ActionResultHolder. |
| template <typename F> |
| static ActionResultHolder* |
| PerformAction(const Action<F>& action, |
| const typename Function<F>::ArgumentTuple& args) { |
| return new ActionResultHolder(Wrapper(action.Perform(args))); |
| } |
| |
| private: |
| typedef ReferenceOrValueWrapper<T> Wrapper; |
| |
| explicit ActionResultHolder(Wrapper result) |
| : result_(GTEST_MOVE_(result)) {} |
| |
| Wrapper result_; |
| |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder); |
| }; |
| |
| // Specialization for T = void. |
| template <> |
| class ActionResultHolder<void> : public UntypedActionResultHolderBase { |
| public: |
| void Unwrap() { } |
| |
| virtual void PrintAsActionResult(::std::ostream* /* os */) const {} |
| |
| // Performs the given mock function's default action and returns ownership |
| // of an empty ActionResultHolder*. |
| template <typename F> |
| static ActionResultHolder* PerformDefaultAction( |
| const FunctionMockerBase<F>* func_mocker, |
| const typename Function<F>::ArgumentTuple& args, |
| const string& call_description) { |
| func_mocker->PerformDefaultAction(args, call_description); |
| return new ActionResultHolder; |
| } |
| |
| // Performs the given action and returns ownership of an empty |
| // ActionResultHolder*. |
| template <typename F> |
| static ActionResultHolder* PerformAction( |
| const Action<F>& action, |
| const typename Function<F>::ArgumentTuple& args) { |
| action.Perform(args); |
| return new ActionResultHolder; |
| } |
| |
| private: |
| ActionResultHolder() {} |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder); |
| }; |
| |
| // The base of the function mocker class for the given function type. |
| // We put the methods in this class instead of its child to avoid code |
| // bloat. |
| template <typename F> |
| class FunctionMockerBase : public UntypedFunctionMockerBase { |
| public: |
| typedef typename Function<F>::Result Result; |
| typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; |
| |
| FunctionMockerBase() : current_spec_(this) {} |
| |
| // The destructor verifies that all expectations on this mock |
| // function have been satisfied. If not, it will report Google Test |
| // non-fatal failures for the violations. |
| virtual ~FunctionMockerBase() |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
| MutexLock l(&g_gmock_mutex); |
| VerifyAndClearExpectationsLocked(); |
| Mock::UnregisterLocked(this); |
| ClearDefaultActionsLocked(); |
| } |
| |
| // Returns the ON_CALL spec that matches this mock function with the |
| // given arguments; returns NULL if no matching ON_CALL is found. |
| // L = * |
| const OnCallSpec<F>* FindOnCallSpec( |
| const ArgumentTuple& args) const { |
| for (UntypedOnCallSpecs::const_reverse_iterator it |
| = untyped_on_call_specs_.rbegin(); |
| it != untyped_on_call_specs_.rend(); ++it) { |
| const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it); |
| if (spec->Matches(args)) |
| return spec; |
| } |
| |
| return NULL; |
| } |
| |
| // Performs the default action of this mock function on the given |
| // arguments and returns the result. Asserts (or throws if |
| // exceptions are enabled) with a helpful call descrption if there |
| // is no valid return value. This method doesn't depend on the |
| // mutable state of this object, and thus can be called concurrently |
| // without locking. |
| // L = * |
| Result PerformDefaultAction(const ArgumentTuple& args, |
| const string& call_description) const { |
| const OnCallSpec<F>* const spec = |
| this->FindOnCallSpec(args); |
| if (spec != NULL) { |
| return spec->GetAction().Perform(args); |
| } |
| const string message = call_description + |
| "\n The mock function has no default action " |
| "set, and its return type has no default value set."; |
| #if GTEST_HAS_EXCEPTIONS |
| if (!DefaultValue<Result>::Exists()) { |
| throw std::runtime_error(message); |
| } |
| #else |
| Assert(DefaultValue<Result>::Exists(), "", -1, message); |
| #endif |
| return DefaultValue<Result>::Get(); |
| } |
| |
| // Performs the default action with the given arguments and returns |
| // the action's result. The call description string will be used in |
| // the error message to describe the call in the case the default |
| // action fails. The caller is responsible for deleting the result. |
| // L = * |
| virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction( |
| const void* untyped_args, // must point to an ArgumentTuple |
| const string& call_description) const { |
| const ArgumentTuple& args = |
| *static_cast<const ArgumentTuple*>(untyped_args); |
| return ResultHolder::PerformDefaultAction(this, args, call_description); |
| } |
| |
| // Performs the given action with the given arguments and returns |
| // the action's result. The caller is responsible for deleting the |
| // result. |
| // L = * |
| virtual UntypedActionResultHolderBase* UntypedPerformAction( |
| const void* untyped_action, const void* untyped_args) const { |
| // Make a copy of the action before performing it, in case the |
| // action deletes the mock object (and thus deletes itself). |
| const Action<F> action = *static_cast<const Action<F>*>(untyped_action); |
| const ArgumentTuple& args = |
| *static_cast<const ArgumentTuple*>(untyped_args); |
| return ResultHolder::PerformAction(action, args); |
| } |
| |
| // Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked(): |
| // clears the ON_CALL()s set on this mock function. |
| virtual void ClearDefaultActionsLocked() |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| |
| // Deleting our default actions may trigger other mock objects to be |
| // deleted, for example if an action contains a reference counted smart |
| // pointer to that mock object, and that is the last reference. So if we |
| // delete our actions within the context of the global mutex we may deadlock |
| // when this method is called again. Instead, make a copy of the set of |
| // actions to delete, clear our set within the mutex, and then delete the |
| // actions outside of the mutex. |
| UntypedOnCallSpecs specs_to_delete; |
| untyped_on_call_specs_.swap(specs_to_delete); |
| |
| g_gmock_mutex.Unlock(); |
| for (UntypedOnCallSpecs::const_iterator it = |
| specs_to_delete.begin(); |
| it != specs_to_delete.end(); ++it) { |
| delete static_cast<const OnCallSpec<F>*>(*it); |
| } |
| |
| // Lock the mutex again, since the caller expects it to be locked when we |
| // return. |
| g_gmock_mutex.Lock(); |
| } |
| |
| protected: |
| template <typename Function> |
| friend class MockSpec; |
| |
| typedef ActionResultHolder<Result> ResultHolder; |
| |
| // Returns the result of invoking this mock function with the given |
| // arguments. This function can be safely called from multiple |
| // threads concurrently. |
| Result InvokeWith(const ArgumentTuple& args) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
| scoped_ptr<ResultHolder> holder( |
| DownCast_<ResultHolder*>(this->UntypedInvokeWith(&args))); |
| return holder->Unwrap(); |
| } |
| |
| // Adds and returns a default action spec for this mock function. |
| OnCallSpec<F>& AddNewOnCallSpec( |
| const char* file, int line, |
| const ArgumentMatcherTuple& m) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
| Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); |
| OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m); |
| untyped_on_call_specs_.push_back(on_call_spec); |
| return *on_call_spec; |
| } |
| |
| // Adds and returns an expectation spec for this mock function. |
| TypedExpectation<F>& AddNewExpectation( |
| const char* file, |
| int line, |
| const string& source_text, |
| const ArgumentMatcherTuple& m) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
| Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); |
| TypedExpectation<F>* const expectation = |
| new TypedExpectation<F>(this, file, line, source_text, m); |
| const linked_ptr<ExpectationBase> untyped_expectation(expectation); |
| untyped_expectations_.push_back(untyped_expectation); |
| |
| // Adds this expectation into the implicit sequence if there is one. |
| Sequence* const implicit_sequence = g_gmock_implicit_sequence.get(); |
| if (implicit_sequence != NULL) { |
| implicit_sequence->AddExpectation(Expectation(untyped_expectation)); |
| } |
| |
| return *expectation; |
| } |
| |
| // The current spec (either default action spec or expectation spec) |
| // being described on this function mocker. |
| MockSpec<F>& current_spec() { return current_spec_; } |
| |
| private: |
| template <typename Func> friend class TypedExpectation; |
| |
| // Some utilities needed for implementing UntypedInvokeWith(). |
| |
| // Describes what default action will be performed for the given |
| // arguments. |
| // L = * |
| void DescribeDefaultActionTo(const ArgumentTuple& args, |
| ::std::ostream* os) const { |
| const OnCallSpec<F>* const spec = FindOnCallSpec(args); |
| |
| if (spec == NULL) { |
| *os << (internal::type_equals<Result, void>::value ? |
| "returning directly.\n" : |
| "returning default value.\n"); |
| } else { |
| *os << "taking default action specified at:\n" |
| << FormatFileLocation(spec->file(), spec->line()) << "\n"; |
| } |
| } |
| |
| // Writes a message that the call is uninteresting (i.e. neither |
| // explicitly expected nor explicitly unexpected) to the given |
| // ostream. |
| virtual void UntypedDescribeUninterestingCall( |
| const void* untyped_args, |
| ::std::ostream* os) const |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
| const ArgumentTuple& args = |
| *static_cast<const ArgumentTuple*>(untyped_args); |
| *os << "Uninteresting mock function call - "; |
| DescribeDefaultActionTo(args, os); |
| *os << " Function call: " << Name(); |
| UniversalPrint(args, os); |
| } |
| |
| // Returns the expectation that matches the given function arguments |
| // (or NULL is there's no match); when a match is found, |
| // untyped_action is set to point to the action that should be |
| // performed (or NULL if the action is "do default"), and |
| // is_excessive is modified to indicate whether the call exceeds the |
| // expected number. |
| // |
| // Critical section: We must find the matching expectation and the |
| // corresponding action that needs to be taken in an ATOMIC |
| // transaction. Otherwise another thread may call this mock |
| // method in the middle and mess up the state. |
| // |
| // However, performing the action has to be left out of the critical |
| // section. The reason is that we have no control on what the |
| // action does (it can invoke an arbitrary user function or even a |
| // mock function) and excessive locking could cause a dead lock. |
| virtual const ExpectationBase* UntypedFindMatchingExpectation( |
| const void* untyped_args, |
| const void** untyped_action, bool* is_excessive, |
| ::std::ostream* what, ::std::ostream* why) |
| GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { |
| const ArgumentTuple& args = |
| *static_cast<const ArgumentTuple*>(untyped_args); |
| MutexLock l(&g_gmock_mutex); |
| TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args); |
| if (exp == NULL) { // A match wasn't found. |
| this->FormatUnexpectedCallMessageLocked(args, what, why); |
| return NULL; |
| } |
| |
| // This line must be done before calling GetActionForArguments(), |
| // which will increment the call count for *exp and thus affect |
| // its saturation status. |
| *is_excessive = exp->IsSaturated(); |
| const Action<F>* action = exp->GetActionForArguments(this, args, what, why); |
| if (action != NULL && action->IsDoDefault()) |
| action = NULL; // Normalize "do default" to NULL. |
| *untyped_action = action; |
| return exp; |
| } |
| |
| // Prints the given function arguments to the ostream. |
| virtual void UntypedPrintArgs(const void* untyped_args, |
| ::std::ostream* os) const { |
| const ArgumentTuple& args = |
| *static_cast<const ArgumentTuple*>(untyped_args); |
| UniversalPrint(args, os); |
| } |
| |
| // Returns the expectation that matches the arguments, or NULL if no |
| // expectation matches them. |
| TypedExpectation<F>* FindMatchingExpectationLocked( |
| const ArgumentTuple& args) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| for (typename UntypedExpectations::const_reverse_iterator it = |
| untyped_expectations_.rbegin(); |
| it != untyped_expectations_.rend(); ++it) { |
| TypedExpectation<F>* const exp = |
| static_cast<TypedExpectation<F>*>(it->get()); |
| if (exp->ShouldHandleArguments(args)) { |
| return exp; |
| } |
| } |
| return NULL; |
| } |
| |
| // Returns a message that the arguments don't match any expectation. |
| void FormatUnexpectedCallMessageLocked( |
| const ArgumentTuple& args, |
| ::std::ostream* os, |
| ::std::ostream* why) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| *os << "\nUnexpected mock function call - "; |
| DescribeDefaultActionTo(args, os); |
| PrintTriedExpectationsLocked(args, why); |
| } |
| |
| // Prints a list of expectations that have been tried against the |
| // current mock function call. |
| void PrintTriedExpectationsLocked( |
| const ArgumentTuple& args, |
| ::std::ostream* why) const |
| GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { |
| g_gmock_mutex.AssertHeld(); |
| const int count = static_cast<int>(untyped_expectations_.size()); |
| *why << "Google Mock tried the following " << count << " " |
| << (count == 1 ? "expectation, but it didn't match" : |
| "expectations, but none matched") |
| << ":\n"; |
| for (int i = 0; i < count; i++) { |
| TypedExpectation<F>* const expectation = |
| static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get()); |
| *why << "\n"; |
| expectation->DescribeLocationTo(why); |
| if (count > 1) { |
| *why << "tried expectation #" << i << ": "; |
| } |
| *why << expectation->source_text() << "...\n"; |
| expectation->ExplainMatchResultTo(args, why); |
| expectation->DescribeCallCountTo(why); |
| } |
| } |
| |
| // The current spec (either default action spec or expectation spec) |
| // being described on this function mocker. |
| MockSpec<F> current_spec_; |
| |
| // There is no generally useful and implementable semantics of |
| // copying a mock object, so copying a mock is usually a user error. |
| // Thus we disallow copying function mockers. If the user really |
| // wants to copy a mock object, he should implement his own copy |
| // operation, for example: |
| // |
| // class MockFoo : public Foo { |
| // public: |
| // // Defines a copy constructor explicitly. |
| // MockFoo(const MockFoo& src) {} |
| // ... |
| // }; |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(FunctionMockerBase); |
| }; // class FunctionMockerBase |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) // Restores the warning state. |
| #endif // _MSV_VER |
| |
| // Implements methods of FunctionMockerBase. |
| |
| // Verifies that all expectations on this mock function have been |
| // satisfied. Reports one or more Google Test non-fatal failures and |
| // returns false if not. |
| |
| // Reports an uninteresting call (whose description is in msg) in the |
| // manner specified by 'reaction'. |
| void ReportUninterestingCall(CallReaction reaction, const string& msg); |
| |
| } // namespace internal |
| |
| // The style guide prohibits "using" statements in a namespace scope |
| // inside a header file. However, the MockSpec class template is |
| // meant to be defined in the ::testing namespace. The following line |
| // is just a trick for working around a bug in MSVC 8.0, which cannot |
| // handle it if we define MockSpec in ::testing. |
| using internal::MockSpec; |
| |
| // Const(x) is a convenient function for obtaining a const reference |
| // to x. This is useful for setting expectations on an overloaded |
| // const mock method, e.g. |
| // |
| // class MockFoo : public FooInterface { |
| // public: |
| // MOCK_METHOD0(Bar, int()); |
| // MOCK_CONST_METHOD0(Bar, int&()); |
| // }; |
| // |
| // MockFoo foo; |
| // // Expects a call to non-const MockFoo::Bar(). |
| // EXPECT_CALL(foo, Bar()); |
| // // Expects a call to const MockFoo::Bar(). |
| // EXPECT_CALL(Const(foo), Bar()); |
| template <typename T> |
| inline const T& Const(const T& x) { return x; } |
| |
| // Constructs an Expectation object that references and co-owns exp. |
| inline Expectation::Expectation(internal::ExpectationBase& exp) // NOLINT |
| : expectation_base_(exp.GetHandle().expectation_base()) {} |
| |
| } // namespace testing |
| |
| // A separate macro is required to avoid compile errors when the name |
| // of the method used in call is a result of macro expansion. |
| // See CompilesWithMethodNameExpandedFromMacro tests in |
| // internal/gmock-spec-builders_test.cc for more details. |
| #define GMOCK_ON_CALL_IMPL_(obj, call) \ |
| ((obj).gmock_##call).InternalDefaultActionSetAt(__FILE__, __LINE__, \ |
| #obj, #call) |
| #define ON_CALL(obj, call) GMOCK_ON_CALL_IMPL_(obj, call) |
| |
| #define GMOCK_EXPECT_CALL_IMPL_(obj, call) \ |
| ((obj).gmock_##call).InternalExpectedAt(__FILE__, __LINE__, #obj, #call) |
| #define EXPECT_CALL(obj, call) GMOCK_EXPECT_CALL_IMPL_(obj, call) |
| |
| #endif // GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ |
| |
| namespace testing { |
| namespace internal { |
| |
| template <typename F> |
| class FunctionMockerBase; |
| |
| // Note: class FunctionMocker really belongs to the ::testing |
| // namespace. However if we define it in ::testing, MSVC will |
| // complain when classes in ::testing::internal declare it as a |
| // friend class template. To workaround this compiler bug, we define |
| // FunctionMocker in ::testing::internal and import it into ::testing. |
| template <typename F> |
| class FunctionMocker; |
| |
| template <typename R> |
| class FunctionMocker<R()> : public |
| internal::FunctionMockerBase<R()> { |
| public: |
| typedef R F(); |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| MockSpec<F>& With() { |
| return this->current_spec(); |
| } |
| |
| R Invoke() { |
| // Even though gcc and MSVC don't enforce it, 'this->' is required |
| // by the C++ standard [14.6.4] here, as the base class type is |
| // dependent on the template argument (and thus shouldn't be |
| // looked into when resolving InvokeWith). |
| return this->InvokeWith(ArgumentTuple()); |
| } |
| }; |
| |
| template <typename R, typename A1> |
| class FunctionMocker<R(A1)> : public |
| internal::FunctionMockerBase<R(A1)> { |
| public: |
| typedef R F(A1); |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| MockSpec<F>& With(const Matcher<A1>& m1) { |
| this->current_spec().SetMatchers(::std::tr1::make_tuple(m1)); |
| return this->current_spec(); |
| } |
| |
| R Invoke(A1 a1) { |
| // Even though gcc and MSVC don't enforce it, 'this->' is required |
| // by the C++ standard [14.6.4] here, as the base class type is |
| // dependent on the template argument (and thus shouldn't be |
| // looked into when resolving InvokeWith). |
| return this->InvokeWith(ArgumentTuple(a1)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2> |
| class FunctionMocker<R(A1, A2)> : public |
| internal::FunctionMockerBase<R(A1, A2)> { |
| public: |
| typedef R F(A1, A2); |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2) { |
| this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2)); |
| return this->current_spec(); |
| } |
| |
| R Invoke(A1 a1, A2 a2) { |
| // Even though gcc and MSVC don't enforce it, 'this->' is required |
| // by the C++ standard [14.6.4] here, as the base class type is |
| // dependent on the template argument (and thus shouldn't be |
| // looked into when resolving InvokeWith). |
| return this->InvokeWith(ArgumentTuple(a1, a2)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3> |
| class FunctionMocker<R(A1, A2, A3)> : public |
| internal::FunctionMockerBase<R(A1, A2, A3)> { |
| public: |
| typedef R F(A1, A2, A3); |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, |
| const Matcher<A3>& m3) { |
| this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3)); |
| return this->current_spec(); |
| } |
| |
| R Invoke(A1 a1, A2 a2, A3 a3) { |
| // Even though gcc and MSVC don't enforce it, 'this->' is required |
| // by the C++ standard [14.6.4] here, as the base class type is |
| // dependent on the template argument (and thus shouldn't be |
| // looked into when resolving InvokeWith). |
| return this->InvokeWith(ArgumentTuple(a1, a2, a3)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4> |
| class FunctionMocker<R(A1, A2, A3, A4)> : public |
| internal::FunctionMockerBase<R(A1, A2, A3, A4)> { |
| public: |
| typedef R F(A1, A2, A3, A4); |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, |
| const Matcher<A3>& m3, const Matcher<A4>& m4) { |
| this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4)); |
| return this->current_spec(); |
| } |
| |
| R Invoke(A1 a1, A2 a2, A3 a3, A4 a4) { |
| // Even though gcc and MSVC don't enforce it, 'this->' is required |
| // by the C++ standard [14.6.4] here, as the base class type is |
| // dependent on the template argument (and thus shouldn't be |
| // looked into when resolving InvokeWith). |
| return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5> |
| class FunctionMocker<R(A1, A2, A3, A4, A5)> : public |
| internal::FunctionMockerBase<R(A1, A2, A3, A4, A5)> { |
| public: |
| typedef R F(A1, A2, A3, A4, A5); |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, |
| const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5) { |
| this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, |
| m5)); |
| return this->current_spec(); |
| } |
| |
| R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) { |
| // Even though gcc and MSVC don't enforce it, 'this->' is required |
| // by the C++ standard [14.6.4] here, as the base class type is |
| // dependent on the template argument (and thus shouldn't be |
| // looked into when resolving InvokeWith). |
| return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6> |
| class FunctionMocker<R(A1, A2, A3, A4, A5, A6)> : public |
| internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6)> { |
| public: |
| typedef R F(A1, A2, A3, A4, A5, A6); |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, |
| const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5, |
| const Matcher<A6>& m6) { |
| this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5, |
| m6)); |
| return this->current_spec(); |
| } |
| |
| R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) { |
| // Even though gcc and MSVC don't enforce it, 'this->' is required |
| // by the C++ standard [14.6.4] here, as the base class type is |
| // dependent on the template argument (and thus shouldn't be |
| // looked into when resolving InvokeWith). |
| return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7> |
| class FunctionMocker<R(A1, A2, A3, A4, A5, A6, A7)> : public |
| internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6, A7)> { |
| public: |
| typedef R F(A1, A2, A3, A4, A5, A6, A7); |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, |
| const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5, |
| const Matcher<A6>& m6, const Matcher<A7>& m7) { |
| this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5, |
| m6, m7)); |
| return this->current_spec(); |
| } |
| |
| R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7) { |
| // Even though gcc and MSVC don't enforce it, 'this->' is required |
| // by the C++ standard [14.6.4] here, as the base class type is |
| // dependent on the template argument (and thus shouldn't be |
| // looked into when resolving InvokeWith). |
| return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6, a7)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7, typename A8> |
| class FunctionMocker<R(A1, A2, A3, A4, A5, A6, A7, A8)> : public |
| internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6, A7, A8)> { |
| public: |
| typedef R F(A1, A2, A3, A4, A5, A6, A7, A8); |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, |
| const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5, |
| const Matcher<A6>& m6, const Matcher<A7>& m7, const Matcher<A8>& m8) { |
| this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5, |
| m6, m7, m8)); |
| return this->current_spec(); |
| } |
| |
| R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8) { |
| // Even though gcc and MSVC don't enforce it, 'this->' is required |
| // by the C++ standard [14.6.4] here, as the base class type is |
| // dependent on the template argument (and thus shouldn't be |
| // looked into when resolving InvokeWith). |
| return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6, a7, a8)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7, typename A8, typename A9> |
| class FunctionMocker<R(A1, A2, A3, A4, A5, A6, A7, A8, A9)> : public |
| internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6, A7, A8, A9)> { |
| public: |
| typedef R F(A1, A2, A3, A4, A5, A6, A7, A8, A9); |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, |
| const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5, |
| const Matcher<A6>& m6, const Matcher<A7>& m7, const Matcher<A8>& m8, |
| const Matcher<A9>& m9) { |
| this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5, |
| m6, m7, m8, m9)); |
| return this->current_spec(); |
| } |
| |
| R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9) { |
| // Even though gcc and MSVC don't enforce it, 'this->' is required |
| // by the C++ standard [14.6.4] here, as the base class type is |
| // dependent on the template argument (and thus shouldn't be |
| // looked into when resolving InvokeWith). |
| return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6, a7, a8, a9)); |
| } |
| }; |
| |
| template <typename R, typename A1, typename A2, typename A3, typename A4, |
| typename A5, typename A6, typename A7, typename A8, typename A9, |
| typename A10> |
| class FunctionMocker<R(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)> : public |
| internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)> { |
| public: |
| typedef R F(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10); |
| typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| |
| MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2, |
| const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5, |
| const Matcher<A6>& m6, const Matcher<A7>& m7, const Matcher<A8>& m8, |
| const Matcher<A9>& m9, const Matcher<A10>& m10) { |
| this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5, |
| m6, m7, m8, m9, m10)); |
| return this->current_spec(); |
| } |
| |
| R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9, |
| A10 a10) { |
| // Even though gcc and MSVC don't enforce it, 'this->' is required |
| // by the C++ standard [14.6.4] here, as the base class type is |
| // dependent on the template argument (and thus shouldn't be |
| // looked into when resolving InvokeWith). |
| return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6, a7, a8, a9, |
| a10)); |
| } |
| }; |
| |
| } // namespace internal |
| |
| // The style guide prohibits "using" statements in a namespace scope |
| // inside a header file. However, the FunctionMocker class template |
| // is meant to be defined in the ::testing namespace. The following |
| // line is just a trick for working around a bug in MSVC 8.0, which |
| // cannot handle it if we define FunctionMocker in ::testing. |
| using internal::FunctionMocker; |
| |
| // GMOCK_RESULT_(tn, F) expands to the result type of function type F. |
| // We define this as a variadic macro in case F contains unprotected |
| // commas (the same reason that we use variadic macros in other places |
| // in this file). |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_RESULT_(tn, ...) \ |
| tn ::testing::internal::Function<__VA_ARGS__>::Result |
| |
| // The type of argument N of the given function type. |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_ARG_(tn, N, ...) \ |
| tn ::testing::internal::Function<__VA_ARGS__>::Argument##N |
| |
| // The matcher type for argument N of the given function type. |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_MATCHER_(tn, N, ...) \ |
| const ::testing::Matcher<GMOCK_ARG_(tn, N, __VA_ARGS__)>& |
| |
| // The variable for mocking the given method. |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_MOCKER_(arity, constness, Method) \ |
| GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__) |
| |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_METHOD0_(tn, constness, ct, Method, ...) \ |
| GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \ |
| ) constness { \ |
| GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \ |
| tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \ |
| == 0), \ |
| this_method_does_not_take_0_arguments); \ |
| GMOCK_MOCKER_(0, constness, Method).SetOwnerAndName(this, #Method); \ |
| return GMOCK_MOCKER_(0, constness, Method).Invoke(); \ |
| } \ |
| ::testing::MockSpec<__VA_ARGS__>& \ |
| gmock_##Method() constness { \ |
| GMOCK_MOCKER_(0, constness, Method).RegisterOwner(this); \ |
| return GMOCK_MOCKER_(0, constness, Method).With(); \ |
| } \ |
| mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(0, constness, \ |
| Method) |
| |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_METHOD1_(tn, constness, ct, Method, ...) \ |
| GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \ |
| GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1) constness { \ |
| GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \ |
| tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \ |
| == 1), \ |
| this_method_does_not_take_1_argument); \ |
| GMOCK_MOCKER_(1, constness, Method).SetOwnerAndName(this, #Method); \ |
| return GMOCK_MOCKER_(1, constness, Method).Invoke(gmock_a1); \ |
| } \ |
| ::testing::MockSpec<__VA_ARGS__>& \ |
| gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1) constness { \ |
| GMOCK_MOCKER_(1, constness, Method).RegisterOwner(this); \ |
| return GMOCK_MOCKER_(1, constness, Method).With(gmock_a1); \ |
| } \ |
| mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(1, constness, \ |
| Method) |
| |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_METHOD2_(tn, constness, ct, Method, ...) \ |
| GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \ |
| GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2) constness { \ |
| GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \ |
| tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \ |
| == 2), \ |
| this_method_does_not_take_2_arguments); \ |
| GMOCK_MOCKER_(2, constness, Method).SetOwnerAndName(this, #Method); \ |
| return GMOCK_MOCKER_(2, constness, Method).Invoke(gmock_a1, gmock_a2); \ |
| } \ |
| ::testing::MockSpec<__VA_ARGS__>& \ |
| gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2) constness { \ |
| GMOCK_MOCKER_(2, constness, Method).RegisterOwner(this); \ |
| return GMOCK_MOCKER_(2, constness, Method).With(gmock_a1, gmock_a2); \ |
| } \ |
| mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(2, constness, \ |
| Method) |
| |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_METHOD3_(tn, constness, ct, Method, ...) \ |
| GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \ |
| GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3) constness { \ |
| GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \ |
| tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \ |
| == 3), \ |
| this_method_does_not_take_3_arguments); \ |
| GMOCK_MOCKER_(3, constness, Method).SetOwnerAndName(this, #Method); \ |
| return GMOCK_MOCKER_(3, constness, Method).Invoke(gmock_a1, gmock_a2, \ |
| gmock_a3); \ |
| } \ |
| ::testing::MockSpec<__VA_ARGS__>& \ |
| gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3) constness { \ |
| GMOCK_MOCKER_(3, constness, Method).RegisterOwner(this); \ |
| return GMOCK_MOCKER_(3, constness, Method).With(gmock_a1, gmock_a2, \ |
| gmock_a3); \ |
| } \ |
| mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(3, constness, \ |
| Method) |
| |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_METHOD4_(tn, constness, ct, Method, ...) \ |
| GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \ |
| GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4) constness { \ |
| GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \ |
| tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \ |
| == 4), \ |
| this_method_does_not_take_4_arguments); \ |
| GMOCK_MOCKER_(4, constness, Method).SetOwnerAndName(this, #Method); \ |
| return GMOCK_MOCKER_(4, constness, Method).Invoke(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4); \ |
| } \ |
| ::testing::MockSpec<__VA_ARGS__>& \ |
| gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4) constness { \ |
| GMOCK_MOCKER_(4, constness, Method).RegisterOwner(this); \ |
| return GMOCK_MOCKER_(4, constness, Method).With(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4); \ |
| } \ |
| mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(4, constness, \ |
| Method) |
| |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_METHOD5_(tn, constness, ct, Method, ...) \ |
| GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \ |
| GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4, \ |
| GMOCK_ARG_(tn, 5, __VA_ARGS__) gmock_a5) constness { \ |
| GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \ |
| tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \ |
| == 5), \ |
| this_method_does_not_take_5_arguments); \ |
| GMOCK_MOCKER_(5, constness, Method).SetOwnerAndName(this, #Method); \ |
| return GMOCK_MOCKER_(5, constness, Method).Invoke(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4, gmock_a5); \ |
| } \ |
| ::testing::MockSpec<__VA_ARGS__>& \ |
| gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4, \ |
| GMOCK_MATCHER_(tn, 5, __VA_ARGS__) gmock_a5) constness { \ |
| GMOCK_MOCKER_(5, constness, Method).RegisterOwner(this); \ |
| return GMOCK_MOCKER_(5, constness, Method).With(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4, gmock_a5); \ |
| } \ |
| mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(5, constness, \ |
| Method) |
| |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_METHOD6_(tn, constness, ct, Method, ...) \ |
| GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \ |
| GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4, \ |
| GMOCK_ARG_(tn, 5, __VA_ARGS__) gmock_a5, \ |
| GMOCK_ARG_(tn, 6, __VA_ARGS__) gmock_a6) constness { \ |
| GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \ |
| tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \ |
| == 6), \ |
| this_method_does_not_take_6_arguments); \ |
| GMOCK_MOCKER_(6, constness, Method).SetOwnerAndName(this, #Method); \ |
| return GMOCK_MOCKER_(6, constness, Method).Invoke(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4, gmock_a5, gmock_a6); \ |
| } \ |
| ::testing::MockSpec<__VA_ARGS__>& \ |
| gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4, \ |
| GMOCK_MATCHER_(tn, 5, __VA_ARGS__) gmock_a5, \ |
| GMOCK_MATCHER_(tn, 6, __VA_ARGS__) gmock_a6) constness { \ |
| GMOCK_MOCKER_(6, constness, Method).RegisterOwner(this); \ |
| return GMOCK_MOCKER_(6, constness, Method).With(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4, gmock_a5, gmock_a6); \ |
| } \ |
| mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(6, constness, \ |
| Method) |
| |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_METHOD7_(tn, constness, ct, Method, ...) \ |
| GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \ |
| GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4, \ |
| GMOCK_ARG_(tn, 5, __VA_ARGS__) gmock_a5, \ |
| GMOCK_ARG_(tn, 6, __VA_ARGS__) gmock_a6, \ |
| GMOCK_ARG_(tn, 7, __VA_ARGS__) gmock_a7) constness { \ |
| GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \ |
| tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \ |
| == 7), \ |
| this_method_does_not_take_7_arguments); \ |
| GMOCK_MOCKER_(7, constness, Method).SetOwnerAndName(this, #Method); \ |
| return GMOCK_MOCKER_(7, constness, Method).Invoke(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7); \ |
| } \ |
| ::testing::MockSpec<__VA_ARGS__>& \ |
| gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4, \ |
| GMOCK_MATCHER_(tn, 5, __VA_ARGS__) gmock_a5, \ |
| GMOCK_MATCHER_(tn, 6, __VA_ARGS__) gmock_a6, \ |
| GMOCK_MATCHER_(tn, 7, __VA_ARGS__) gmock_a7) constness { \ |
| GMOCK_MOCKER_(7, constness, Method).RegisterOwner(this); \ |
| return GMOCK_MOCKER_(7, constness, Method).With(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7); \ |
| } \ |
| mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(7, constness, \ |
| Method) |
| |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_METHOD8_(tn, constness, ct, Method, ...) \ |
| GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \ |
| GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4, \ |
| GMOCK_ARG_(tn, 5, __VA_ARGS__) gmock_a5, \ |
| GMOCK_ARG_(tn, 6, __VA_ARGS__) gmock_a6, \ |
| GMOCK_ARG_(tn, 7, __VA_ARGS__) gmock_a7, \ |
| GMOCK_ARG_(tn, 8, __VA_ARGS__) gmock_a8) constness { \ |
| GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \ |
| tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \ |
| == 8), \ |
| this_method_does_not_take_8_arguments); \ |
| GMOCK_MOCKER_(8, constness, Method).SetOwnerAndName(this, #Method); \ |
| return GMOCK_MOCKER_(8, constness, Method).Invoke(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8); \ |
| } \ |
| ::testing::MockSpec<__VA_ARGS__>& \ |
| gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4, \ |
| GMOCK_MATCHER_(tn, 5, __VA_ARGS__) gmock_a5, \ |
| GMOCK_MATCHER_(tn, 6, __VA_ARGS__) gmock_a6, \ |
| GMOCK_MATCHER_(tn, 7, __VA_ARGS__) gmock_a7, \ |
| GMOCK_MATCHER_(tn, 8, __VA_ARGS__) gmock_a8) constness { \ |
| GMOCK_MOCKER_(8, constness, Method).RegisterOwner(this); \ |
| return GMOCK_MOCKER_(8, constness, Method).With(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8); \ |
| } \ |
| mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(8, constness, \ |
| Method) |
| |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_METHOD9_(tn, constness, ct, Method, ...) \ |
| GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \ |
| GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4, \ |
| GMOCK_ARG_(tn, 5, __VA_ARGS__) gmock_a5, \ |
| GMOCK_ARG_(tn, 6, __VA_ARGS__) gmock_a6, \ |
| GMOCK_ARG_(tn, 7, __VA_ARGS__) gmock_a7, \ |
| GMOCK_ARG_(tn, 8, __VA_ARGS__) gmock_a8, \ |
| GMOCK_ARG_(tn, 9, __VA_ARGS__) gmock_a9) constness { \ |
| GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \ |
| tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \ |
| == 9), \ |
| this_method_does_not_take_9_arguments); \ |
| GMOCK_MOCKER_(9, constness, Method).SetOwnerAndName(this, #Method); \ |
| return GMOCK_MOCKER_(9, constness, Method).Invoke(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8, \ |
| gmock_a9); \ |
| } \ |
| ::testing::MockSpec<__VA_ARGS__>& \ |
| gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4, \ |
| GMOCK_MATCHER_(tn, 5, __VA_ARGS__) gmock_a5, \ |
| GMOCK_MATCHER_(tn, 6, __VA_ARGS__) gmock_a6, \ |
| GMOCK_MATCHER_(tn, 7, __VA_ARGS__) gmock_a7, \ |
| GMOCK_MATCHER_(tn, 8, __VA_ARGS__) gmock_a8, \ |
| GMOCK_MATCHER_(tn, 9, __VA_ARGS__) gmock_a9) constness { \ |
| GMOCK_MOCKER_(9, constness, Method).RegisterOwner(this); \ |
| return GMOCK_MOCKER_(9, constness, Method).With(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8, \ |
| gmock_a9); \ |
| } \ |
| mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(9, constness, \ |
| Method) |
| |
| // INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!! |
| #define GMOCK_METHOD10_(tn, constness, ct, Method, ...) \ |
| GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \ |
| GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4, \ |
| GMOCK_ARG_(tn, 5, __VA_ARGS__) gmock_a5, \ |
| GMOCK_ARG_(tn, 6, __VA_ARGS__) gmock_a6, \ |
| GMOCK_ARG_(tn, 7, __VA_ARGS__) gmock_a7, \ |
| GMOCK_ARG_(tn, 8, __VA_ARGS__) gmock_a8, \ |
| GMOCK_ARG_(tn, 9, __VA_ARGS__) gmock_a9, \ |
| GMOCK_ARG_(tn, 10, __VA_ARGS__) gmock_a10) constness { \ |
| GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \ |
| tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \ |
| == 10), \ |
| this_method_does_not_take_10_arguments); \ |
| GMOCK_MOCKER_(10, constness, Method).SetOwnerAndName(this, #Method); \ |
| return GMOCK_MOCKER_(10, constness, Method).Invoke(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8, gmock_a9, \ |
| gmock_a10); \ |
| } \ |
| ::testing::MockSpec<__VA_ARGS__>& \ |
| gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \ |
| GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \ |
| GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \ |
| GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4, \ |
| GMOCK_MATCHER_(tn, 5, __VA_ARGS__) gmock_a5, \ |
| GMOCK_MATCHER_(tn, 6, __VA_ARGS__) gmock_a6, \ |
| GMOCK_MATCHER_(tn, 7, __VA_ARGS__) gmock_a7, \ |
| GMOCK_MATCHER_(tn, 8, __VA_ARGS__) gmock_a8, \ |
| GMOCK_MATCHER_(tn, 9, __VA_ARGS__) gmock_a9, \ |
| GMOCK_MATCHER_(tn, 10, \ |
| __VA_ARGS__) gmock_a10) constness { \ |
| GMOCK_MOCKER_(10, constness, Method).RegisterOwner(this); \ |
| return GMOCK_MOCKER_(10, constness, Method).With(gmock_a1, gmock_a2, \ |
| gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8, gmock_a9, \ |
| gmock_a10); \ |
| } \ |
| mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(10, constness, \ |
| Method) |
| |
| #define MOCK_METHOD0(m, ...) GMOCK_METHOD0_(, , , m, __VA_ARGS__) |
| #define MOCK_METHOD1(m, ...) GMOCK_METHOD1_(, , , m, __VA_ARGS__) |
| #define MOCK_METHOD2(m, ...) GMOCK_METHOD2_(, , , m, __VA_ARGS__) |
| #define MOCK_METHOD3(m, ...) GMOCK_METHOD3_(, , , m, __VA_ARGS__) |
| #define MOCK_METHOD4(m, ...) GMOCK_METHOD4_(, , , m, __VA_ARGS__) |
| #define MOCK_METHOD5(m, ...) GMOCK_METHOD5_(, , , m, __VA_ARGS__) |
| #define MOCK_METHOD6(m, ...) GMOCK_METHOD6_(, , , m, __VA_ARGS__) |
| #define MOCK_METHOD7(m, ...) GMOCK_METHOD7_(, , , m, __VA_ARGS__) |
| #define MOCK_METHOD8(m, ...) GMOCK_METHOD8_(, , , m, __VA_ARGS__) |
| #define MOCK_METHOD9(m, ...) GMOCK_METHOD9_(, , , m, __VA_ARGS__) |
| #define MOCK_METHOD10(m, ...) GMOCK_METHOD10_(, , , m, __VA_ARGS__) |
| |
| #define MOCK_CONST_METHOD0(m, ...) GMOCK_METHOD0_(, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD1(m, ...) GMOCK_METHOD1_(, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD2(m, ...) GMOCK_METHOD2_(, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD3(m, ...) GMOCK_METHOD3_(, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD4(m, ...) GMOCK_METHOD4_(, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD5(m, ...) GMOCK_METHOD5_(, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD6(m, ...) GMOCK_METHOD6_(, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD7(m, ...) GMOCK_METHOD7_(, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD8(m, ...) GMOCK_METHOD8_(, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD9(m, ...) GMOCK_METHOD9_(, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD10(m, ...) GMOCK_METHOD10_(, const, , m, __VA_ARGS__) |
| |
| #define MOCK_METHOD0_T(m, ...) GMOCK_METHOD0_(typename, , , m, __VA_ARGS__) |
| #define MOCK_METHOD1_T(m, ...) GMOCK_METHOD1_(typename, , , m, __VA_ARGS__) |
| #define MOCK_METHOD2_T(m, ...) GMOCK_METHOD2_(typename, , , m, __VA_ARGS__) |
| #define MOCK_METHOD3_T(m, ...) GMOCK_METHOD3_(typename, , , m, __VA_ARGS__) |
| #define MOCK_METHOD4_T(m, ...) GMOCK_METHOD4_(typename, , , m, __VA_ARGS__) |
| #define MOCK_METHOD5_T(m, ...) GMOCK_METHOD5_(typename, , , m, __VA_ARGS__) |
| #define MOCK_METHOD6_T(m, ...) GMOCK_METHOD6_(typename, , , m, __VA_ARGS__) |
| #define MOCK_METHOD7_T(m, ...) GMOCK_METHOD7_(typename, , , m, __VA_ARGS__) |
| #define MOCK_METHOD8_T(m, ...) GMOCK_METHOD8_(typename, , , m, __VA_ARGS__) |
| #define MOCK_METHOD9_T(m, ...) GMOCK_METHOD9_(typename, , , m, __VA_ARGS__) |
| #define MOCK_METHOD10_T(m, ...) GMOCK_METHOD10_(typename, , , m, __VA_ARGS__) |
| |
| #define MOCK_CONST_METHOD0_T(m, ...) \ |
| GMOCK_METHOD0_(typename, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD1_T(m, ...) \ |
| GMOCK_METHOD1_(typename, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD2_T(m, ...) \ |
| GMOCK_METHOD2_(typename, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD3_T(m, ...) \ |
| GMOCK_METHOD3_(typename, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD4_T(m, ...) \ |
| GMOCK_METHOD4_(typename, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD5_T(m, ...) \ |
| GMOCK_METHOD5_(typename, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD6_T(m, ...) \ |
| GMOCK_METHOD6_(typename, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD7_T(m, ...) \ |
| GMOCK_METHOD7_(typename, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD8_T(m, ...) \ |
| GMOCK_METHOD8_(typename, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD9_T(m, ...) \ |
| GMOCK_METHOD9_(typename, const, , m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD10_T(m, ...) \ |
| GMOCK_METHOD10_(typename, const, , m, __VA_ARGS__) |
| |
| #define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD0_(, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD1_(, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD2_(, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD3_(, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD4_(, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD5_(, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD6_(, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD7_(, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD8_(, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD9_(, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD10_(, , ct, m, __VA_ARGS__) |
| |
| #define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD0_(, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD1_(, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD2_(, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD3_(, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD4_(, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD5_(, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD6_(, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD7_(, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD8_(, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD9_(, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD10_(, const, ct, m, __VA_ARGS__) |
| |
| #define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD0_(typename, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD1_(typename, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD2_(typename, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD3_(typename, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD4_(typename, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD5_(typename, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD6_(typename, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD7_(typename, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD8_(typename, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD9_(typename, , ct, m, __VA_ARGS__) |
| #define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD10_(typename, , ct, m, __VA_ARGS__) |
| |
| #define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD0_(typename, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD1_(typename, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD2_(typename, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD3_(typename, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD4_(typename, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD5_(typename, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD6_(typename, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD7_(typename, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD8_(typename, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD9_(typename, const, ct, m, __VA_ARGS__) |
| #define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \ |
| GMOCK_METHOD10_(typename, const, ct, m, __VA_ARGS__) |
| |
| // A MockFunction<F> class has one mock method whose type is F. It is |
| // useful when you just want your test code to emit some messages and |
| // have Google Mock verify the right messages are sent (and perhaps at |
| // the right times). For example, if you are exercising code: |
| // |
| // Foo(1); |
| // Foo(2); |
| // Foo(3); |
| // |
| // and want to verify that Foo(1) and Foo(3) both invoke |
| // mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write: |
| // |
| // TEST(FooTest, InvokesBarCorrectly) { |
| // MyMock mock; |
| // MockFunction<void(string check_point_name)> check; |
| // { |
| // InSequence s; |
| // |
| // EXPECT_CALL(mock, Bar("a")); |
| // EXPECT_CALL(check, Call("1")); |
| // EXPECT_CALL(check, Call("2")); |
| // EXPECT_CALL(mock, Bar("a")); |
| // } |
| // Foo(1); |
| // check.Call("1"); |
| // Foo(2); |
| // check.Call("2"); |
| // Foo(3); |
| // } |
| // |
| // The expectation spec says that the first Bar("a") must happen |
| // before check point "1", the second Bar("a") must happen after check |
| // point "2", and nothing should happen between the two check |
| // points. The explicit check points make it easy to tell which |
| // Bar("a") is called by which call to Foo(). |
| template <typename F> |
| class MockFunction; |
| |
| template <typename R> |
| class MockFunction<R()> { |
| public: |
| MockFunction() {} |
| |
| MOCK_METHOD0_T(Call, R()); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); |
| }; |
| |
| template <typename R, typename A0> |
| class MockFunction<R(A0)> { |
| public: |
| MockFunction() {} |
| |
| MOCK_METHOD1_T(Call, R(A0)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); |
| }; |
| |
| template <typename R, typename A0, typename A1> |
| class MockFunction<R(A0, A1)> { |
| public: |
| MockFunction() {} |
| |
| MOCK_METHOD2_T(Call, R(A0, A1)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); |
| }; |
| |
| template <typename R, typename A0, typename A1, typename A2> |
| class MockFunction<R(A0, A1, A2)> { |
| public: |
| MockFunction() {} |
| |
| MOCK_METHOD3_T(Call, R(A0, A1, A2)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); |
| }; |
| |
| template <typename R, typename A0, typename A1, typename A2, typename A3> |
| class MockFunction<R(A0, A1, A2, A3)> { |
| public: |
| MockFunction() {} |
| |
| MOCK_METHOD4_T(Call, R(A0, A1, A2, A3)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); |
| }; |
| |
| template <typename R, typename A0, typename A1, typename A2, typename A3, |
| typename A4> |
| class MockFunction<R(A0, A1, A2, A3, A4)> { |
| public: |
| MockFunction() {} |
| |
| MOCK_METHOD5_T(Call, R(A0, A1, A2, A3, A4)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); |
| }; |
| |
| template <typename R, typename A0, typename A1, typename A2, typename A3, |
| typename A4, typename A5> |
| class MockFunction<R(A0, A1, A2, A3, A4, A5)> { |
| public: |
| MockFunction() {} |
| |
| MOCK_METHOD6_T(Call, R(A0, A1, A2, A3, A4, A5)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); |
| }; |
| |
| template <typename R, typename A0, typename A1, typename A2, typename A3, |
| typename A4, typename A5, typename A6> |
| class MockFunction<R(A0, A1, A2, A3, A4, A5, A6)> { |
| public: |
| MockFunction() {} |
| |
| MOCK_METHOD7_T(Call, R(A0, A1, A2, A3, A4, A5, A6)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); |
| }; |
| |
| template <typename R, typename A0, typename A1, typename A2, typename A3, |
| typename A4, typename A5, typename A6, typename A7> |
| class MockFunction<R(A0, A1, A2, A3, A4, A5, A6, A7)> { |
| public: |
| MockFunction() {} |
| |
| MOCK_METHOD8_T(Call, R(A0, A1, A2, A3, A4, A5, A6, A7)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); |
| }; |
| |
| template <typename R, typename A0, typename A1, typename A2, typename A3, |
| typename A4, typename A5, typename A6, typename A7, typename A8> |
| class MockFunction<R(A0, A1, A2, A3, A4, A5, A6, A7, A8)> { |
| public: |
| MockFunction() {} |
| |
| MOCK_METHOD9_T(Call, R(A0, A1, A2, A3, A4, A5, A6, A7, A8)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); |
| }; |
| |
| template <typename R, typename A0, typename A1, typename A2, typename A3, |
| typename A4, typename A5, typename A6, typename A7, typename A8, |
| typename A9> |
| class MockFunction<R(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)> { |
| public: |
| MockFunction() {} |
| |
| MOCK_METHOD10_T(Call, R(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)); |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction); |
| }; |
| |
| } // namespace testing |
| |
| #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_ |
| // This file was GENERATED by command: |
| // pump.py gmock-generated-nice-strict.h.pump |
| // DO NOT EDIT BY HAND!!! |
| |
| // Copyright 2008, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Implements class templates NiceMock, NaggyMock, and StrictMock. |
| // |
| // Given a mock class MockFoo that is created using Google Mock, |
| // NiceMock<MockFoo> is a subclass of MockFoo that allows |
| // uninteresting calls (i.e. calls to mock methods that have no |
| // EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo |
| // that prints a warning when an uninteresting call occurs, and |
| // StrictMock<MockFoo> is a subclass of MockFoo that treats all |
| // uninteresting calls as errors. |
| // |
| // Currently a mock is naggy by default, so MockFoo and |
| // NaggyMock<MockFoo> behave like the same. However, we will soon |
| // switch the default behavior of mocks to be nice, as that in general |
| // leads to more maintainable tests. When that happens, MockFoo will |
| // stop behaving like NaggyMock<MockFoo> and start behaving like |
| // NiceMock<MockFoo>. |
| // |
| // NiceMock, NaggyMock, and StrictMock "inherit" the constructors of |
| // their respective base class, with up-to 10 arguments. Therefore |
| // you can write NiceMock<MockFoo>(5, "a") to construct a nice mock |
| // where MockFoo has a constructor that accepts (int, const char*), |
| // for example. |
| // |
| // A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>, |
| // and StrictMock<MockFoo> only works for mock methods defined using |
| // the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class. |
| // If a mock method is defined in a base class of MockFoo, the "nice" |
| // or "strict" modifier may not affect it, depending on the compiler. |
| // In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT |
| // supported. |
| // |
| // Another known limitation is that the constructors of the base mock |
| // cannot have arguments passed by non-const reference, which are |
| // banned by the Google C++ style guide anyway. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_NICE_STRICT_H_ |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_NICE_STRICT_H_ |
| |
| |
| namespace testing { |
| |
| template <class MockClass> |
| class NiceMock : public MockClass { |
| public: |
| // We don't factor out the constructor body to a common method, as |
| // we have to avoid a possible clash with members of MockClass. |
| NiceMock() { |
| ::testing::Mock::AllowUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| // C++ doesn't (yet) allow inheritance of constructors, so we have |
| // to define it for each arity. |
| template <typename A1> |
| explicit NiceMock(const A1& a1) : MockClass(a1) { |
| ::testing::Mock::AllowUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| template <typename A1, typename A2> |
| NiceMock(const A1& a1, const A2& a2) : MockClass(a1, a2) { |
| ::testing::Mock::AllowUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3> |
| NiceMock(const A1& a1, const A2& a2, const A3& a3) : MockClass(a1, a2, a3) { |
| ::testing::Mock::AllowUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4> |
| NiceMock(const A1& a1, const A2& a2, const A3& a3, |
| const A4& a4) : MockClass(a1, a2, a3, a4) { |
| ::testing::Mock::AllowUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5> |
| NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5) : MockClass(a1, a2, a3, a4, a5) { |
| ::testing::Mock::AllowUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6> |
| NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6) : MockClass(a1, a2, a3, a4, a5, a6) { |
| ::testing::Mock::AllowUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7> |
| NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6, const A7& a7) : MockClass(a1, a2, a3, a4, a5, |
| a6, a7) { |
| ::testing::Mock::AllowUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7, typename A8> |
| NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6, const A7& a7, const A8& a8) : MockClass(a1, |
| a2, a3, a4, a5, a6, a7, a8) { |
| ::testing::Mock::AllowUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7, typename A8, typename A9> |
| NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6, const A7& a7, const A8& a8, |
| const A9& a9) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9) { |
| ::testing::Mock::AllowUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7, typename A8, typename A9, typename A10> |
| NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, |
| const A10& a10) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) { |
| ::testing::Mock::AllowUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| virtual ~NiceMock() { |
| ::testing::Mock::UnregisterCallReaction( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock); |
| }; |
| |
| template <class MockClass> |
| class NaggyMock : public MockClass { |
| public: |
| // We don't factor out the constructor body to a common method, as |
| // we have to avoid a possible clash with members of MockClass. |
| NaggyMock() { |
| ::testing::Mock::WarnUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| // C++ doesn't (yet) allow inheritance of constructors, so we have |
| // to define it for each arity. |
| template <typename A1> |
| explicit NaggyMock(const A1& a1) : MockClass(a1) { |
| ::testing::Mock::WarnUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| template <typename A1, typename A2> |
| NaggyMock(const A1& a1, const A2& a2) : MockClass(a1, a2) { |
| ::testing::Mock::WarnUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3> |
| NaggyMock(const A1& a1, const A2& a2, const A3& a3) : MockClass(a1, a2, a3) { |
| ::testing::Mock::WarnUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4> |
| NaggyMock(const A1& a1, const A2& a2, const A3& a3, |
| const A4& a4) : MockClass(a1, a2, a3, a4) { |
| ::testing::Mock::WarnUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5> |
| NaggyMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5) : MockClass(a1, a2, a3, a4, a5) { |
| ::testing::Mock::WarnUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6> |
| NaggyMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6) : MockClass(a1, a2, a3, a4, a5, a6) { |
| ::testing::Mock::WarnUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7> |
| NaggyMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6, const A7& a7) : MockClass(a1, a2, a3, a4, a5, |
| a6, a7) { |
| ::testing::Mock::WarnUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7, typename A8> |
| NaggyMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6, const A7& a7, const A8& a8) : MockClass(a1, |
| a2, a3, a4, a5, a6, a7, a8) { |
| ::testing::Mock::WarnUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7, typename A8, typename A9> |
| NaggyMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6, const A7& a7, const A8& a8, |
| const A9& a9) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9) { |
| ::testing::Mock::WarnUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7, typename A8, typename A9, typename A10> |
| NaggyMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, |
| const A10& a10) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) { |
| ::testing::Mock::WarnUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| virtual ~NaggyMock() { |
| ::testing::Mock::UnregisterCallReaction( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock); |
| }; |
| |
| template <class MockClass> |
| class StrictMock : public MockClass { |
| public: |
| // We don't factor out the constructor body to a common method, as |
| // we have to avoid a possible clash with members of MockClass. |
| StrictMock() { |
| ::testing::Mock::FailUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| // C++ doesn't (yet) allow inheritance of constructors, so we have |
| // to define it for each arity. |
| template <typename A1> |
| explicit StrictMock(const A1& a1) : MockClass(a1) { |
| ::testing::Mock::FailUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| template <typename A1, typename A2> |
| StrictMock(const A1& a1, const A2& a2) : MockClass(a1, a2) { |
| ::testing::Mock::FailUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3> |
| StrictMock(const A1& a1, const A2& a2, const A3& a3) : MockClass(a1, a2, a3) { |
| ::testing::Mock::FailUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4> |
| StrictMock(const A1& a1, const A2& a2, const A3& a3, |
| const A4& a4) : MockClass(a1, a2, a3, a4) { |
| ::testing::Mock::FailUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5> |
| StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5) : MockClass(a1, a2, a3, a4, a5) { |
| ::testing::Mock::FailUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6> |
| StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6) : MockClass(a1, a2, a3, a4, a5, a6) { |
| ::testing::Mock::FailUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7> |
| StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6, const A7& a7) : MockClass(a1, a2, a3, a4, a5, |
| a6, a7) { |
| ::testing::Mock::FailUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7, typename A8> |
| StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6, const A7& a7, const A8& a8) : MockClass(a1, |
| a2, a3, a4, a5, a6, a7, a8) { |
| ::testing::Mock::FailUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7, typename A8, typename A9> |
| StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6, const A7& a7, const A8& a8, |
| const A9& a9) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9) { |
| ::testing::Mock::FailUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| template <typename A1, typename A2, typename A3, typename A4, typename A5, |
| typename A6, typename A7, typename A8, typename A9, typename A10> |
| StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4, |
| const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, |
| const A10& a10) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) { |
| ::testing::Mock::FailUninterestingCalls( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| virtual ~StrictMock() { |
| ::testing::Mock::UnregisterCallReaction( |
| internal::ImplicitCast_<MockClass*>(this)); |
| } |
| |
| private: |
| GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock); |
| }; |
| |
| // The following specializations catch some (relatively more common) |
| // user errors of nesting nice and strict mocks. They do NOT catch |
| // all possible errors. |
| |
| // These specializations are declared but not defined, as NiceMock, |
| // NaggyMock, and StrictMock cannot be nested. |
| |
| template <typename MockClass> |
| class NiceMock<NiceMock<MockClass> >; |
| template <typename MockClass> |
| class NiceMock<NaggyMock<MockClass> >; |
| template <typename MockClass> |
| class NiceMock<StrictMock<MockClass> >; |
| |
| template <typename MockClass> |
| class NaggyMock<NiceMock<MockClass> >; |
| template <typename MockClass> |
| class NaggyMock<NaggyMock<MockClass> >; |
| template <typename MockClass> |
| class NaggyMock<StrictMock<MockClass> >; |
| |
| template <typename MockClass> |
| class StrictMock<NiceMock<MockClass> >; |
| template <typename MockClass> |
| class StrictMock<NaggyMock<MockClass> >; |
| template <typename MockClass> |
| class StrictMock<StrictMock<MockClass> >; |
| |
| } // namespace testing |
| |
| #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_NICE_STRICT_H_ |
| // This file was GENERATED by command: |
| // pump.py gmock-generated-matchers.h.pump |
| // DO NOT EDIT BY HAND!!! |
| |
| // Copyright 2008, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements some commonly used variadic matchers. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ |
| |
| #include <iterator> |
| #include <sstream> |
| #include <string> |
| #include <vector> |
| |
| namespace testing { |
| namespace internal { |
| |
| // The type of the i-th (0-based) field of Tuple. |
| #define GMOCK_FIELD_TYPE_(Tuple, i) \ |
| typename ::std::tr1::tuple_element<i, Tuple>::type |
| |
| // TupleFields<Tuple, k0, ..., kn> is for selecting fields from a |
| // tuple of type Tuple. It has two members: |
| // |
| // type: a tuple type whose i-th field is the ki-th field of Tuple. |
| // GetSelectedFields(t): returns fields k0, ..., and kn of t as a tuple. |
| // |
| // For example, in class TupleFields<tuple<bool, char, int>, 2, 0>, we have: |
| // |
| // type is tuple<int, bool>, and |
| // GetSelectedFields(make_tuple(true, 'a', 42)) is (42, true). |
| |
| template <class Tuple, int k0 = -1, int k1 = -1, int k2 = -1, int k3 = -1, |
| int k4 = -1, int k5 = -1, int k6 = -1, int k7 = -1, int k8 = -1, |
| int k9 = -1> |
| class TupleFields; |
| |
| // This generic version is used when there are 10 selectors. |
| template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5, int k6, |
| int k7, int k8, int k9> |
| class TupleFields { |
| public: |
| typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), |
| GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), |
| GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4), |
| GMOCK_FIELD_TYPE_(Tuple, k5), GMOCK_FIELD_TYPE_(Tuple, k6), |
| GMOCK_FIELD_TYPE_(Tuple, k7), GMOCK_FIELD_TYPE_(Tuple, k8), |
| GMOCK_FIELD_TYPE_(Tuple, k9)> type; |
| static type GetSelectedFields(const Tuple& t) { |
| using ::std::tr1::get; |
| return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t), |
| get<k5>(t), get<k6>(t), get<k7>(t), get<k8>(t), get<k9>(t)); |
| } |
| }; |
| |
| // The following specialization is used for 0 ~ 9 selectors. |
| |
| template <class Tuple> |
| class TupleFields<Tuple, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1> { |
| public: |
| typedef ::std::tr1::tuple<> type; |
| static type GetSelectedFields(const Tuple& /* t */) { |
| using ::std::tr1::get; |
| return type(); |
| } |
| }; |
| |
| template <class Tuple, int k0> |
| class TupleFields<Tuple, k0, -1, -1, -1, -1, -1, -1, -1, -1, -1> { |
| public: |
| typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0)> type; |
| static type GetSelectedFields(const Tuple& t) { |
| using ::std::tr1::get; |
| return type(get<k0>(t)); |
| } |
| }; |
| |
| template <class Tuple, int k0, int k1> |
| class TupleFields<Tuple, k0, k1, -1, -1, -1, -1, -1, -1, -1, -1> { |
| public: |
| typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), |
| GMOCK_FIELD_TYPE_(Tuple, k1)> type; |
| static type GetSelectedFields(const Tuple& t) { |
| using ::std::tr1::get; |
| return type(get<k0>(t), get<k1>(t)); |
| } |
| }; |
| |
| template <class Tuple, int k0, int k1, int k2> |
| class TupleFields<Tuple, k0, k1, k2, -1, -1, -1, -1, -1, -1, -1> { |
| public: |
| typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), |
| GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2)> type; |
| static type GetSelectedFields(const Tuple& t) { |
| using ::std::tr1::get; |
| return type(get<k0>(t), get<k1>(t), get<k2>(t)); |
| } |
| }; |
| |
| template <class Tuple, int k0, int k1, int k2, int k3> |
| class TupleFields<Tuple, k0, k1, k2, k3, -1, -1, -1, -1, -1, -1> { |
| public: |
| typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), |
| GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), |
| GMOCK_FIELD_TYPE_(Tuple, k3)> type; |
| static type GetSelectedFields(const Tuple& t) { |
| using ::std::tr1::get; |
| return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t)); |
| } |
| }; |
| |
| template <class Tuple, int k0, int k1, int k2, int k3, int k4> |
| class TupleFields<Tuple, k0, k1, k2, k3, k4, -1, -1, -1, -1, -1> { |
| public: |
| typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), |
| GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), |
| GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4)> type; |
| static type GetSelectedFields(const Tuple& t) { |
| using ::std::tr1::get; |
| return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t)); |
| } |
| }; |
| |
| template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5> |
| class TupleFields<Tuple, k0, k1, k2, k3, k4, k5, -1, -1, -1, -1> { |
| public: |
| typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), |
| GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), |
| GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4), |
| GMOCK_FIELD_TYPE_(Tuple, k5)> type; |
| static type GetSelectedFields(const Tuple& t) { |
| using ::std::tr1::get; |
| return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t), |
| get<k5>(t)); |
| } |
| }; |
| |
| template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5, int k6> |
| class TupleFields<Tuple, k0, k1, k2, k3, k4, k5, k6, -1, -1, -1> { |
| public: |
| typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), |
| GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), |
| GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4), |
| GMOCK_FIELD_TYPE_(Tuple, k5), GMOCK_FIELD_TYPE_(Tuple, k6)> type; |
| static type GetSelectedFields(const Tuple& t) { |
| using ::std::tr1::get; |
| return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t), |
| get<k5>(t), get<k6>(t)); |
| } |
| }; |
| |
| template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5, int k6, |
| int k7> |
| class TupleFields<Tuple, k0, k1, k2, k3, k4, k5, k6, k7, -1, -1> { |
| public: |
| typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), |
| GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), |
| GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4), |
| GMOCK_FIELD_TYPE_(Tuple, k5), GMOCK_FIELD_TYPE_(Tuple, k6), |
| GMOCK_FIELD_TYPE_(Tuple, k7)> type; |
| static type GetSelectedFields(const Tuple& t) { |
| using ::std::tr1::get; |
| return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t), |
| get<k5>(t), get<k6>(t), get<k7>(t)); |
| } |
| }; |
| |
| template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5, int k6, |
| int k7, int k8> |
| class TupleFields<Tuple, k0, k1, k2, k3, k4, k5, k6, k7, k8, -1> { |
| public: |
| typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0), |
| GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2), |
| GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4), |
| GMOCK_FIELD_TYPE_(Tuple, k5), GMOCK_FIELD_TYPE_(Tuple, k6), |
| GMOCK_FIELD_TYPE_(Tuple, k7), GMOCK_FIELD_TYPE_(Tuple, k8)> type; |
| static type GetSelectedFields(const Tuple& t) { |
| using ::std::tr1::get; |
| return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t), |
| get<k5>(t), get<k6>(t), get<k7>(t), get<k8>(t)); |
| } |
| }; |
| |
| #undef GMOCK_FIELD_TYPE_ |
| |
| // Implements the Args() matcher. |
| template <class ArgsTuple, int k0 = -1, int k1 = -1, int k2 = -1, int k3 = -1, |
| int k4 = -1, int k5 = -1, int k6 = -1, int k7 = -1, int k8 = -1, |
| int k9 = -1> |
| class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { |
| public: |
| // ArgsTuple may have top-level const or reference modifiers. |
| typedef GTEST_REMOVE_REFERENCE_AND_CONST_(ArgsTuple) RawArgsTuple; |
| typedef typename internal::TupleFields<RawArgsTuple, k0, k1, k2, k3, k4, k5, |
| k6, k7, k8, k9>::type SelectedArgs; |
| typedef Matcher<const SelectedArgs&> MonomorphicInnerMatcher; |
| |
| template <typename InnerMatcher> |
| explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) |
| : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} |
| |
| virtual bool MatchAndExplain(ArgsTuple args, |
| MatchResultListener* listener) const { |
| const SelectedArgs& selected_args = GetSelectedArgs(args); |
| if (!listener->IsInterested()) |
| return inner_matcher_.Matches(selected_args); |
| |
| PrintIndices(listener->stream()); |
| *listener << "are " << PrintToString(selected_args); |
| |
| StringMatchResultListener inner_listener; |
| const bool match = inner_matcher_.MatchAndExplain(selected_args, |
| &inner_listener); |
| PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
| return match; |
| } |
| |
| virtual void DescribeTo(::std::ostream* os) const { |
| *os << "are a tuple "; |
| PrintIndices(os); |
| inner_matcher_.DescribeTo(os); |
| } |
| |
| virtual void DescribeNegationTo(::std::ostream* os) const { |
| *os << "are a tuple "; |
| PrintIndices(os); |
| inner_matcher_.DescribeNegationTo(os); |
| } |
| |
| private: |
| static SelectedArgs GetSelectedArgs(ArgsTuple args) { |
| return TupleFields<RawArgsTuple, k0, k1, k2, k3, k4, k5, k6, k7, k8, |
| k9>::GetSelectedFields(args); |
| } |
| |
| // Prints the indices of the selected fields. |
| static void PrintIndices(::std::ostream* os) { |
| *os << "whose fields ("; |
| const int indices[10] = { k0, k1, k2, k3, k4, k5, k6, k7, k8, k9 }; |
| for (int i = 0; i < 10; i++) { |
| if (indices[i] < 0) |
| break; |
| |
| if (i >= 1) |
| *os << ", "; |
| |
| *os << "#" << indices[i]; |
| } |
| *os << ") "; |
| } |
| |
| const MonomorphicInnerMatcher inner_matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(ArgsMatcherImpl); |
| }; |
| |
| template <class InnerMatcher, int k0 = -1, int k1 = -1, int k2 = -1, |
| int k3 = -1, int k4 = -1, int k5 = -1, int k6 = -1, int k7 = -1, |
| int k8 = -1, int k9 = -1> |
| class ArgsMatcher { |
| public: |
| explicit ArgsMatcher(const InnerMatcher& inner_matcher) |
| : inner_matcher_(inner_matcher) {} |
| |
| template <typename ArgsTuple> |
| operator Matcher<ArgsTuple>() const { |
| return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k0, k1, k2, k3, k4, k5, |
| k6, k7, k8, k9>(inner_matcher_)); |
| } |
| |
| private: |
| const InnerMatcher inner_matcher_; |
| |
| GTEST_DISALLOW_ASSIGN_(ArgsMatcher); |
| }; |
| |
| // A set of metafunctions for computing the result type of AllOf. |
| // AllOf(m1, ..., mN) returns |
| // AllOfResultN<decltype(m1), ..., decltype(mN)>::type. |
| |
| // Although AllOf isn't defined for one argument, AllOfResult1 is defined |
| // to simplify the implementation. |
| template <typename M1> |
| struct AllOfResult1 { |
| typedef M1 type; |
| }; |
| |
| template <typename M1, typename M2> |
| struct AllOfResult2 { |
| typedef BothOfMatcher< |
| typename AllOfResult1<M1>::type, |
| typename AllOfResult1<M2>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3> |
| struct AllOfResult3 { |
| typedef BothOfMatcher< |
| typename AllOfResult1<M1>::type, |
| typename AllOfResult2<M2, M3>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4> |
| struct AllOfResult4 { |
| typedef BothOfMatcher< |
| typename AllOfResult2<M1, M2>::type, |
| typename AllOfResult2<M3, M4>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5> |
| struct AllOfResult5 { |
| typedef BothOfMatcher< |
| typename AllOfResult2<M1, M2>::type, |
| typename AllOfResult3<M3, M4, M5>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6> |
| struct AllOfResult6 { |
| typedef BothOfMatcher< |
| typename AllOfResult3<M1, M2, M3>::type, |
| typename AllOfResult3<M4, M5, M6>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7> |
| struct AllOfResult7 { |
| typedef BothOfMatcher< |
| typename AllOfResult3<M1, M2, M3>::type, |
| typename AllOfResult4<M4, M5, M6, M7>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7, typename M8> |
| struct AllOfResult8 { |
| typedef BothOfMatcher< |
| typename AllOfResult4<M1, M2, M3, M4>::type, |
| typename AllOfResult4<M5, M6, M7, M8>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7, typename M8, typename M9> |
| struct AllOfResult9 { |
| typedef BothOfMatcher< |
| typename AllOfResult4<M1, M2, M3, M4>::type, |
| typename AllOfResult5<M5, M6, M7, M8, M9>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7, typename M8, typename M9, typename M10> |
| struct AllOfResult10 { |
| typedef BothOfMatcher< |
| typename AllOfResult5<M1, M2, M3, M4, M5>::type, |
| typename AllOfResult5<M6, M7, M8, M9, M10>::type |
| > type; |
| }; |
| |
| // A set of metafunctions for computing the result type of AnyOf. |
| // AnyOf(m1, ..., mN) returns |
| // AnyOfResultN<decltype(m1), ..., decltype(mN)>::type. |
| |
| // Although AnyOf isn't defined for one argument, AnyOfResult1 is defined |
| // to simplify the implementation. |
| template <typename M1> |
| struct AnyOfResult1 { |
| typedef M1 type; |
| }; |
| |
| template <typename M1, typename M2> |
| struct AnyOfResult2 { |
| typedef EitherOfMatcher< |
| typename AnyOfResult1<M1>::type, |
| typename AnyOfResult1<M2>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3> |
| struct AnyOfResult3 { |
| typedef EitherOfMatcher< |
| typename AnyOfResult1<M1>::type, |
| typename AnyOfResult2<M2, M3>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4> |
| struct AnyOfResult4 { |
| typedef EitherOfMatcher< |
| typename AnyOfResult2<M1, M2>::type, |
| typename AnyOfResult2<M3, M4>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5> |
| struct AnyOfResult5 { |
| typedef EitherOfMatcher< |
| typename AnyOfResult2<M1, M2>::type, |
| typename AnyOfResult3<M3, M4, M5>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6> |
| struct AnyOfResult6 { |
| typedef EitherOfMatcher< |
| typename AnyOfResult3<M1, M2, M3>::type, |
| typename AnyOfResult3<M4, M5, M6>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7> |
| struct AnyOfResult7 { |
| typedef EitherOfMatcher< |
| typename AnyOfResult3<M1, M2, M3>::type, |
| typename AnyOfResult4<M4, M5, M6, M7>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7, typename M8> |
| struct AnyOfResult8 { |
| typedef EitherOfMatcher< |
| typename AnyOfResult4<M1, M2, M3, M4>::type, |
| typename AnyOfResult4<M5, M6, M7, M8>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7, typename M8, typename M9> |
| struct AnyOfResult9 { |
| typedef EitherOfMatcher< |
| typename AnyOfResult4<M1, M2, M3, M4>::type, |
| typename AnyOfResult5<M5, M6, M7, M8, M9>::type |
| > type; |
| }; |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7, typename M8, typename M9, typename M10> |
| struct AnyOfResult10 { |
| typedef EitherOfMatcher< |
| typename AnyOfResult5<M1, M2, M3, M4, M5>::type, |
| typename AnyOfResult5<M6, M7, M8, M9, M10>::type |
| > type; |
| }; |
| |
| } // namespace internal |
| |
| // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected |
| // fields of it matches a_matcher. C++ doesn't support default |
| // arguments for function templates, so we have to overload it. |
| template <typename InnerMatcher> |
| inline internal::ArgsMatcher<InnerMatcher> |
| Args(const InnerMatcher& matcher) { |
| return internal::ArgsMatcher<InnerMatcher>(matcher); |
| } |
| |
| template <int k1, typename InnerMatcher> |
| inline internal::ArgsMatcher<InnerMatcher, k1> |
| Args(const InnerMatcher& matcher) { |
| return internal::ArgsMatcher<InnerMatcher, k1>(matcher); |
| } |
| |
| template <int k1, int k2, typename InnerMatcher> |
| inline internal::ArgsMatcher<InnerMatcher, k1, k2> |
| Args(const InnerMatcher& matcher) { |
| return internal::ArgsMatcher<InnerMatcher, k1, k2>(matcher); |
| } |
| |
| template <int k1, int k2, int k3, typename InnerMatcher> |
| inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3> |
| Args(const InnerMatcher& matcher) { |
| return internal::ArgsMatcher<InnerMatcher, k1, k2, k3>(matcher); |
| } |
| |
| template <int k1, int k2, int k3, int k4, typename InnerMatcher> |
| inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4> |
| Args(const InnerMatcher& matcher) { |
| return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4>(matcher); |
| } |
| |
| template <int k1, int k2, int k3, int k4, int k5, typename InnerMatcher> |
| inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5> |
| Args(const InnerMatcher& matcher) { |
| return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5>(matcher); |
| } |
| |
| template <int k1, int k2, int k3, int k4, int k5, int k6, typename InnerMatcher> |
| inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6> |
| Args(const InnerMatcher& matcher) { |
| return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6>(matcher); |
| } |
| |
| template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, |
| typename InnerMatcher> |
| inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7> |
| Args(const InnerMatcher& matcher) { |
| return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, |
| k7>(matcher); |
| } |
| |
| template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, |
| typename InnerMatcher> |
| inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8> |
| Args(const InnerMatcher& matcher) { |
| return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, |
| k8>(matcher); |
| } |
| |
| template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, |
| int k9, typename InnerMatcher> |
| inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8, k9> |
| Args(const InnerMatcher& matcher) { |
| return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8, |
| k9>(matcher); |
| } |
| |
| template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8, |
| int k9, int k10, typename InnerMatcher> |
| inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8, k9, |
| k10> |
| Args(const InnerMatcher& matcher) { |
| return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8, |
| k9, k10>(matcher); |
| } |
| |
| // ElementsAre(e_1, e_2, ... e_n) matches an STL-style container with |
| // n elements, where the i-th element in the container must |
| // match the i-th argument in the list. Each argument of |
| // ElementsAre() can be either a value or a matcher. We support up to |
| // 10 arguments. |
| // |
| // The use of DecayArray in the implementation allows ElementsAre() |
| // to accept string literals, whose type is const char[N], but we |
| // want to treat them as const char*. |
| // |
| // NOTE: Since ElementsAre() cares about the order of the elements, it |
| // must not be used with containers whose elements's order is |
| // undefined (e.g. hash_map). |
| |
| inline internal::ElementsAreMatcher< |
| std::tr1::tuple<> > |
| ElementsAre() { |
| typedef std::tr1::tuple<> Args; |
| return internal::ElementsAreMatcher<Args>(Args()); |
| } |
| |
| template <typename T1> |
| inline internal::ElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type> > |
| ElementsAre(const T1& e1) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type> Args; |
| return internal::ElementsAreMatcher<Args>(Args(e1)); |
| } |
| |
| template <typename T1, typename T2> |
| inline internal::ElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type> > |
| ElementsAre(const T1& e1, const T2& e2) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type> Args; |
| return internal::ElementsAreMatcher<Args>(Args(e1, e2)); |
| } |
| |
| template <typename T1, typename T2, typename T3> |
| inline internal::ElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type> > |
| ElementsAre(const T1& e1, const T2& e2, const T3& e3) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type> Args; |
| return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4> |
| inline internal::ElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type> > |
| ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type> Args; |
| return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5> |
| inline internal::ElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type> > |
| ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, |
| const T5& e5) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type> Args; |
| return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6> |
| inline internal::ElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type> > |
| ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, |
| const T5& e5, const T6& e6) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type> Args; |
| return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, e6)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6, typename T7> |
| inline internal::ElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type> > |
| ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, |
| const T5& e5, const T6& e6, const T7& e7) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type> Args; |
| return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, e6, e7)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6, typename T7, typename T8> |
| inline internal::ElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type, |
| typename internal::DecayArray<T8>::type> > |
| ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, |
| const T5& e5, const T6& e6, const T7& e7, const T8& e8) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type, |
| typename internal::DecayArray<T8>::type> Args; |
| return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, e6, e7, |
| e8)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6, typename T7, typename T8, typename T9> |
| inline internal::ElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type, |
| typename internal::DecayArray<T8>::type, |
| typename internal::DecayArray<T9>::type> > |
| ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, |
| const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type, |
| typename internal::DecayArray<T8>::type, |
| typename internal::DecayArray<T9>::type> Args; |
| return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, e6, e7, |
| e8, e9)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6, typename T7, typename T8, typename T9, typename T10> |
| inline internal::ElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type, |
| typename internal::DecayArray<T8>::type, |
| typename internal::DecayArray<T9>::type, |
| typename internal::DecayArray<T10>::type> > |
| ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, |
| const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9, |
| const T10& e10) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type, |
| typename internal::DecayArray<T8>::type, |
| typename internal::DecayArray<T9>::type, |
| typename internal::DecayArray<T10>::type> Args; |
| return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, e6, e7, |
| e8, e9, e10)); |
| } |
| |
| // UnorderedElementsAre(e_1, e_2, ..., e_n) is an ElementsAre extension |
| // that matches n elements in any order. We support up to n=10 arguments. |
| |
| inline internal::UnorderedElementsAreMatcher< |
| std::tr1::tuple<> > |
| UnorderedElementsAre() { |
| typedef std::tr1::tuple<> Args; |
| return internal::UnorderedElementsAreMatcher<Args>(Args()); |
| } |
| |
| template <typename T1> |
| inline internal::UnorderedElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type> > |
| UnorderedElementsAre(const T1& e1) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type> Args; |
| return internal::UnorderedElementsAreMatcher<Args>(Args(e1)); |
| } |
| |
| template <typename T1, typename T2> |
| inline internal::UnorderedElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type> > |
| UnorderedElementsAre(const T1& e1, const T2& e2) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type> Args; |
| return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2)); |
| } |
| |
| template <typename T1, typename T2, typename T3> |
| inline internal::UnorderedElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type> > |
| UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type> Args; |
| return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4> |
| inline internal::UnorderedElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type> > |
| UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type> Args; |
| return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5> |
| inline internal::UnorderedElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type> > |
| UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, |
| const T5& e5) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type> Args; |
| return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6> |
| inline internal::UnorderedElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type> > |
| UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, |
| const T5& e5, const T6& e6) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type> Args; |
| return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, |
| e6)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6, typename T7> |
| inline internal::UnorderedElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type> > |
| UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, |
| const T5& e5, const T6& e6, const T7& e7) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type> Args; |
| return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, |
| e6, e7)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6, typename T7, typename T8> |
| inline internal::UnorderedElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type, |
| typename internal::DecayArray<T8>::type> > |
| UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, |
| const T5& e5, const T6& e6, const T7& e7, const T8& e8) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type, |
| typename internal::DecayArray<T8>::type> Args; |
| return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, |
| e6, e7, e8)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6, typename T7, typename T8, typename T9> |
| inline internal::UnorderedElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type, |
| typename internal::DecayArray<T8>::type, |
| typename internal::DecayArray<T9>::type> > |
| UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, |
| const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type, |
| typename internal::DecayArray<T8>::type, |
| typename internal::DecayArray<T9>::type> Args; |
| return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, |
| e6, e7, e8, e9)); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6, typename T7, typename T8, typename T9, typename T10> |
| inline internal::UnorderedElementsAreMatcher< |
| std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type, |
| typename internal::DecayArray<T8>::type, |
| typename internal::DecayArray<T9>::type, |
| typename internal::DecayArray<T10>::type> > |
| UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4, |
| const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9, |
| const T10& e10) { |
| typedef std::tr1::tuple< |
| typename internal::DecayArray<T1>::type, |
| typename internal::DecayArray<T2>::type, |
| typename internal::DecayArray<T3>::type, |
| typename internal::DecayArray<T4>::type, |
| typename internal::DecayArray<T5>::type, |
| typename internal::DecayArray<T6>::type, |
| typename internal::DecayArray<T7>::type, |
| typename internal::DecayArray<T8>::type, |
| typename internal::DecayArray<T9>::type, |
| typename internal::DecayArray<T10>::type> Args; |
| return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, |
| e6, e7, e8, e9, e10)); |
| } |
| |
| // AllOf(m1, m2, ..., mk) matches any value that matches all of the given |
| // sub-matchers. AllOf is called fully qualified to prevent ADL from firing. |
| |
| template <typename M1, typename M2> |
| inline typename internal::AllOfResult2<M1, M2>::type |
| AllOf(M1 m1, M2 m2) { |
| return typename internal::AllOfResult2<M1, M2>::type( |
| m1, |
| m2); |
| } |
| |
| template <typename M1, typename M2, typename M3> |
| inline typename internal::AllOfResult3<M1, M2, M3>::type |
| AllOf(M1 m1, M2 m2, M3 m3) { |
| return typename internal::AllOfResult3<M1, M2, M3>::type( |
| m1, |
| ::testing::AllOf(m2, m3)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4> |
| inline typename internal::AllOfResult4<M1, M2, M3, M4>::type |
| AllOf(M1 m1, M2 m2, M3 m3, M4 m4) { |
| return typename internal::AllOfResult4<M1, M2, M3, M4>::type( |
| ::testing::AllOf(m1, m2), |
| ::testing::AllOf(m3, m4)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5> |
| inline typename internal::AllOfResult5<M1, M2, M3, M4, M5>::type |
| AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5) { |
| return typename internal::AllOfResult5<M1, M2, M3, M4, M5>::type( |
| ::testing::AllOf(m1, m2), |
| ::testing::AllOf(m3, m4, m5)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6> |
| inline typename internal::AllOfResult6<M1, M2, M3, M4, M5, M6>::type |
| AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6) { |
| return typename internal::AllOfResult6<M1, M2, M3, M4, M5, M6>::type( |
| ::testing::AllOf(m1, m2, m3), |
| ::testing::AllOf(m4, m5, m6)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7> |
| inline typename internal::AllOfResult7<M1, M2, M3, M4, M5, M6, M7>::type |
| AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7) { |
| return typename internal::AllOfResult7<M1, M2, M3, M4, M5, M6, M7>::type( |
| ::testing::AllOf(m1, m2, m3), |
| ::testing::AllOf(m4, m5, m6, m7)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7, typename M8> |
| inline typename internal::AllOfResult8<M1, M2, M3, M4, M5, M6, M7, M8>::type |
| AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8) { |
| return typename internal::AllOfResult8<M1, M2, M3, M4, M5, M6, M7, M8>::type( |
| ::testing::AllOf(m1, m2, m3, m4), |
| ::testing::AllOf(m5, m6, m7, m8)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7, typename M8, typename M9> |
| inline typename internal::AllOfResult9<M1, M2, M3, M4, M5, M6, M7, M8, M9>::type |
| AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8, M9 m9) { |
| return typename internal::AllOfResult9<M1, M2, M3, M4, M5, M6, M7, M8, |
| M9>::type( |
| ::testing::AllOf(m1, m2, m3, m4), |
| ::testing::AllOf(m5, m6, m7, m8, m9)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7, typename M8, typename M9, typename M10> |
| inline typename internal::AllOfResult10<M1, M2, M3, M4, M5, M6, M7, M8, M9, |
| M10>::type |
| AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8, M9 m9, M10 m10) { |
| return typename internal::AllOfResult10<M1, M2, M3, M4, M5, M6, M7, M8, M9, |
| M10>::type( |
| ::testing::AllOf(m1, m2, m3, m4, m5), |
| ::testing::AllOf(m6, m7, m8, m9, m10)); |
| } |
| |
| // AnyOf(m1, m2, ..., mk) matches any value that matches any of the given |
| // sub-matchers. AnyOf is called fully qualified to prevent ADL from firing. |
| |
| template <typename M1, typename M2> |
| inline typename internal::AnyOfResult2<M1, M2>::type |
| AnyOf(M1 m1, M2 m2) { |
| return typename internal::AnyOfResult2<M1, M2>::type( |
| m1, |
| m2); |
| } |
| |
| template <typename M1, typename M2, typename M3> |
| inline typename internal::AnyOfResult3<M1, M2, M3>::type |
| AnyOf(M1 m1, M2 m2, M3 m3) { |
| return typename internal::AnyOfResult3<M1, M2, M3>::type( |
| m1, |
| ::testing::AnyOf(m2, m3)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4> |
| inline typename internal::AnyOfResult4<M1, M2, M3, M4>::type |
| AnyOf(M1 m1, M2 m2, M3 m3, M4 m4) { |
| return typename internal::AnyOfResult4<M1, M2, M3, M4>::type( |
| ::testing::AnyOf(m1, m2), |
| ::testing::AnyOf(m3, m4)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5> |
| inline typename internal::AnyOfResult5<M1, M2, M3, M4, M5>::type |
| AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5) { |
| return typename internal::AnyOfResult5<M1, M2, M3, M4, M5>::type( |
| ::testing::AnyOf(m1, m2), |
| ::testing::AnyOf(m3, m4, m5)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6> |
| inline typename internal::AnyOfResult6<M1, M2, M3, M4, M5, M6>::type |
| AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6) { |
| return typename internal::AnyOfResult6<M1, M2, M3, M4, M5, M6>::type( |
| ::testing::AnyOf(m1, m2, m3), |
| ::testing::AnyOf(m4, m5, m6)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7> |
| inline typename internal::AnyOfResult7<M1, M2, M3, M4, M5, M6, M7>::type |
| AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7) { |
| return typename internal::AnyOfResult7<M1, M2, M3, M4, M5, M6, M7>::type( |
| ::testing::AnyOf(m1, m2, m3), |
| ::testing::AnyOf(m4, m5, m6, m7)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7, typename M8> |
| inline typename internal::AnyOfResult8<M1, M2, M3, M4, M5, M6, M7, M8>::type |
| AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8) { |
| return typename internal::AnyOfResult8<M1, M2, M3, M4, M5, M6, M7, M8>::type( |
| ::testing::AnyOf(m1, m2, m3, m4), |
| ::testing::AnyOf(m5, m6, m7, m8)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7, typename M8, typename M9> |
| inline typename internal::AnyOfResult9<M1, M2, M3, M4, M5, M6, M7, M8, M9>::type |
| AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8, M9 m9) { |
| return typename internal::AnyOfResult9<M1, M2, M3, M4, M5, M6, M7, M8, |
| M9>::type( |
| ::testing::AnyOf(m1, m2, m3, m4), |
| ::testing::AnyOf(m5, m6, m7, m8, m9)); |
| } |
| |
| template <typename M1, typename M2, typename M3, typename M4, typename M5, |
| typename M6, typename M7, typename M8, typename M9, typename M10> |
| inline typename internal::AnyOfResult10<M1, M2, M3, M4, M5, M6, M7, M8, M9, |
| M10>::type |
| AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8, M9 m9, M10 m10) { |
| return typename internal::AnyOfResult10<M1, M2, M3, M4, M5, M6, M7, M8, M9, |
| M10>::type( |
| ::testing::AnyOf(m1, m2, m3, m4, m5), |
| ::testing::AnyOf(m6, m7, m8, m9, m10)); |
| } |
| |
| } // namespace testing |
| |
| |
| // The MATCHER* family of macros can be used in a namespace scope to |
| // define custom matchers easily. |
| // |
| // Basic Usage |
| // =========== |
| // |
| // The syntax |
| // |
| // MATCHER(name, description_string) { statements; } |
| // |
| // defines a matcher with the given name that executes the statements, |
| // which must return a bool to indicate if the match succeeds. Inside |
| // the statements, you can refer to the value being matched by 'arg', |
| // and refer to its type by 'arg_type'. |
| // |
| // The description string documents what the matcher does, and is used |
| // to generate the failure message when the match fails. Since a |
| // MATCHER() is usually defined in a header file shared by multiple |
| // C++ source files, we require the description to be a C-string |
| // literal to avoid possible side effects. It can be empty, in which |
| // case we'll use the sequence of words in the matcher name as the |
| // description. |
| // |
| // For example: |
| // |
| // MATCHER(IsEven, "") { return (arg % 2) == 0; } |
| // |
| // allows you to write |
| // |
| // // Expects mock_foo.Bar(n) to be called where n is even. |
| // EXPECT_CALL(mock_foo, Bar(IsEven())); |
| // |
| // or, |
| // |
| // // Verifies that the value of some_expression is even. |
| // EXPECT_THAT(some_expression, IsEven()); |
| // |
| // If the above assertion fails, it will print something like: |
| // |
| // Value of: some_expression |
| // Expected: is even |
| // Actual: 7 |
| // |
| // where the description "is even" is automatically calculated from the |
| // matcher name IsEven. |
| // |
| // Argument Type |
| // ============= |
| // |
| // Note that the type of the value being matched (arg_type) is |
| // determined by the context in which you use the matcher and is |
| // supplied to you by the compiler, so you don't need to worry about |
| // declaring it (nor can you). This allows the matcher to be |
| // polymorphic. For example, IsEven() can be used to match any type |
| // where the value of "(arg % 2) == 0" can be implicitly converted to |
| // a bool. In the "Bar(IsEven())" example above, if method Bar() |
| // takes an int, 'arg_type' will be int; if it takes an unsigned long, |
| // 'arg_type' will be unsigned long; and so on. |
| // |
| // Parameterizing Matchers |
| // ======================= |
| // |
| // Sometimes you'll want to parameterize the matcher. For that you |
| // can use another macro: |
| // |
| // MATCHER_P(name, param_name, description_string) { statements; } |
| // |
| // For example: |
| // |
| // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } |
| // |
| // will allow you to write: |
| // |
| // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); |
| // |
| // which may lead to this message (assuming n is 10): |
| // |
| // Value of: Blah("a") |
| // Expected: has absolute value 10 |
| // Actual: -9 |
| // |
| // Note that both the matcher description and its parameter are |
| // printed, making the message human-friendly. |
| // |
| // In the matcher definition body, you can write 'foo_type' to |
| // reference the type of a parameter named 'foo'. For example, in the |
| // body of MATCHER_P(HasAbsoluteValue, value) above, you can write |
| // 'value_type' to refer to the type of 'value'. |
| // |
| // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P10 to |
| // support multi-parameter matchers. |
| // |
| // Describing Parameterized Matchers |
| // ================================= |
| // |
| // The last argument to MATCHER*() is a string-typed expression. The |
| // expression can reference all of the matcher's parameters and a |
| // special bool-typed variable named 'negation'. When 'negation' is |
| // false, the expression should evaluate to the matcher's description; |
| // otherwise it should evaluate to the description of the negation of |
| // the matcher. For example, |
| // |
| // using testing::PrintToString; |
| // |
| // MATCHER_P2(InClosedRange, low, hi, |
| // string(negation ? "is not" : "is") + " in range [" + |
| // PrintToString(low) + ", " + PrintToString(hi) + "]") { |
| // return low <= arg && arg <= hi; |
| // } |
| // ... |
| // EXPECT_THAT(3, InClosedRange(4, 6)); |
| // EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
| // |
| // would generate two failures that contain the text: |
| // |
| // Expected: is in range [4, 6] |
| // ... |
| // Expected: is not in range [2, 4] |
| // |
| // If you specify "" as the description, the failure message will |
| // contain the sequence of words in the matcher name followed by the |
| // parameter values printed as a tuple. For example, |
| // |
| // MATCHER_P2(InClosedRange, low, hi, "") { ... } |
| // ... |
| // EXPECT_THAT(3, InClosedRange(4, 6)); |
| // EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
| // |
| // would generate two failures that contain the text: |
| // |
| // Expected: in closed range (4, 6) |
| // ... |
| // Expected: not (in closed range (2, 4)) |
| // |
| // Types of Matcher Parameters |
| // =========================== |
| // |
| // For the purpose of typing, you can view |
| // |
| // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } |
| // |
| // as shorthand for |
| // |
| // template <typename p1_type, ..., typename pk_type> |
| // FooMatcherPk<p1_type, ..., pk_type> |
| // Foo(p1_type p1, ..., pk_type pk) { ... } |
| // |
| // When you write Foo(v1, ..., vk), the compiler infers the types of |
| // the parameters v1, ..., and vk for you. If you are not happy with |
| // the result of the type inference, you can specify the types by |
| // explicitly instantiating the template, as in Foo<long, bool>(5, |
| // false). As said earlier, you don't get to (or need to) specify |
| // 'arg_type' as that's determined by the context in which the matcher |
| // is used. You can assign the result of expression Foo(p1, ..., pk) |
| // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This |
| // can be useful when composing matchers. |
| // |
| // While you can instantiate a matcher template with reference types, |
| // passing the parameters by pointer usually makes your code more |
| // readable. If, however, you still want to pass a parameter by |
| // reference, be aware that in the failure message generated by the |
| // matcher you will see the value of the referenced object but not its |
| // address. |
| // |
| // Explaining Match Results |
| // ======================== |
| // |
| // Sometimes the matcher description alone isn't enough to explain why |
| // the match has failed or succeeded. For example, when expecting a |
| // long string, it can be very helpful to also print the diff between |
| // the expected string and the actual one. To achieve that, you can |
| // optionally stream additional information to a special variable |
| // named result_listener, whose type is a pointer to class |
| // MatchResultListener: |
| // |
| // MATCHER_P(EqualsLongString, str, "") { |
| // if (arg == str) return true; |
| // |
| // *result_listener << "the difference: " |
| /// << DiffStrings(str, arg); |
| // return false; |
| // } |
| // |
| // Overloading Matchers |
| // ==================== |
| // |
| // You can overload matchers with different numbers of parameters: |
| // |
| // MATCHER_P(Blah, a, description_string1) { ... } |
| // MATCHER_P2(Blah, a, b, description_string2) { ... } |
| // |
| // Caveats |
| // ======= |
| // |
| // When defining a new matcher, you should also consider implementing |
| // MatcherInterface or using MakePolymorphicMatcher(). These |
| // approaches require more work than the MATCHER* macros, but also |
| // give you more control on the types of the value being matched and |
| // the matcher parameters, which may leads to better compiler error |
| // messages when the matcher is used wrong. They also allow |
| // overloading matchers based on parameter types (as opposed to just |
| // based on the number of parameters). |
| // |
| // MATCHER*() can only be used in a namespace scope. The reason is |
| // that C++ doesn't yet allow function-local types to be used to |
| // instantiate templates. The up-coming C++0x standard will fix this. |
| // Once that's done, we'll consider supporting using MATCHER*() inside |
| // a function. |
| // |
| // More Information |
| // ================ |
| // |
| // To learn more about using these macros, please search for 'MATCHER' |
| // on http://code.google.com/p/googlemock/wiki/CookBook. |
| |
| #define MATCHER(name, description)\ |
| class name##Matcher {\ |
| public:\ |
| template <typename arg_type>\ |
| class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ |
| public:\ |
| gmock_Impl()\ |
| {}\ |
| virtual bool MatchAndExplain(\ |
| arg_type arg, ::testing::MatchResultListener* result_listener) const;\ |
| virtual void DescribeTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(false);\ |
| }\ |
| virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(true);\ |
| }\ |
| private:\ |
| ::testing::internal::string FormatDescription(bool negation) const {\ |
| const ::testing::internal::string gmock_description = (description);\ |
| if (!gmock_description.empty())\ |
| return gmock_description;\ |
| return ::testing::internal::FormatMatcherDescription(\ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ |
| ::std::tr1::tuple<>()));\ |
| }\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename arg_type>\ |
| operator ::testing::Matcher<arg_type>() const {\ |
| return ::testing::Matcher<arg_type>(\ |
| new gmock_Impl<arg_type>());\ |
| }\ |
| name##Matcher() {\ |
| }\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##Matcher);\ |
| };\ |
| inline name##Matcher name() {\ |
| return name##Matcher();\ |
| }\ |
| template <typename arg_type>\ |
| bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(\ |
| arg_type arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ |
| const |
| |
| #define MATCHER_P(name, p0, description)\ |
| template <typename p0##_type>\ |
| class name##MatcherP {\ |
| public:\ |
| template <typename arg_type>\ |
| class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ |
| public:\ |
| explicit gmock_Impl(p0##_type gmock_p0)\ |
| : p0(gmock_p0) {}\ |
| virtual bool MatchAndExplain(\ |
| arg_type arg, ::testing::MatchResultListener* result_listener) const;\ |
| virtual void DescribeTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(false);\ |
| }\ |
| virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(true);\ |
| }\ |
| p0##_type p0;\ |
| private:\ |
| ::testing::internal::string FormatDescription(bool negation) const {\ |
| const ::testing::internal::string gmock_description = (description);\ |
| if (!gmock_description.empty())\ |
| return gmock_description;\ |
| return ::testing::internal::FormatMatcherDescription(\ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ |
| ::std::tr1::tuple<p0##_type>(p0)));\ |
| }\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename arg_type>\ |
| operator ::testing::Matcher<arg_type>() const {\ |
| return ::testing::Matcher<arg_type>(\ |
| new gmock_Impl<arg_type>(p0));\ |
| }\ |
| name##MatcherP(p0##_type gmock_p0) : p0(gmock_p0) {\ |
| }\ |
| p0##_type p0;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##MatcherP);\ |
| };\ |
| template <typename p0##_type>\ |
| inline name##MatcherP<p0##_type> name(p0##_type p0) {\ |
| return name##MatcherP<p0##_type>(p0);\ |
| }\ |
| template <typename p0##_type>\ |
| template <typename arg_type>\ |
| bool name##MatcherP<p0##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ |
| arg_type arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ |
| const |
| |
| #define MATCHER_P2(name, p0, p1, description)\ |
| template <typename p0##_type, typename p1##_type>\ |
| class name##MatcherP2 {\ |
| public:\ |
| template <typename arg_type>\ |
| class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ |
| public:\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1)\ |
| : p0(gmock_p0), p1(gmock_p1) {}\ |
| virtual bool MatchAndExplain(\ |
| arg_type arg, ::testing::MatchResultListener* result_listener) const;\ |
| virtual void DescribeTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(false);\ |
| }\ |
| virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(true);\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| private:\ |
| ::testing::internal::string FormatDescription(bool negation) const {\ |
| const ::testing::internal::string gmock_description = (description);\ |
| if (!gmock_description.empty())\ |
| return gmock_description;\ |
| return ::testing::internal::FormatMatcherDescription(\ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ |
| ::std::tr1::tuple<p0##_type, p1##_type>(p0, p1)));\ |
| }\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename arg_type>\ |
| operator ::testing::Matcher<arg_type>() const {\ |
| return ::testing::Matcher<arg_type>(\ |
| new gmock_Impl<arg_type>(p0, p1));\ |
| }\ |
| name##MatcherP2(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \ |
| p1(gmock_p1) {\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##MatcherP2);\ |
| };\ |
| template <typename p0##_type, typename p1##_type>\ |
| inline name##MatcherP2<p0##_type, p1##_type> name(p0##_type p0, \ |
| p1##_type p1) {\ |
| return name##MatcherP2<p0##_type, p1##_type>(p0, p1);\ |
| }\ |
| template <typename p0##_type, typename p1##_type>\ |
| template <typename arg_type>\ |
| bool name##MatcherP2<p0##_type, \ |
| p1##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ |
| arg_type arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ |
| const |
| |
| #define MATCHER_P3(name, p0, p1, p2, description)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type>\ |
| class name##MatcherP3 {\ |
| public:\ |
| template <typename arg_type>\ |
| class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ |
| public:\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2)\ |
| : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\ |
| virtual bool MatchAndExplain(\ |
| arg_type arg, ::testing::MatchResultListener* result_listener) const;\ |
| virtual void DescribeTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(false);\ |
| }\ |
| virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(true);\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| private:\ |
| ::testing::internal::string FormatDescription(bool negation) const {\ |
| const ::testing::internal::string gmock_description = (description);\ |
| if (!gmock_description.empty())\ |
| return gmock_description;\ |
| return ::testing::internal::FormatMatcherDescription(\ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ |
| ::std::tr1::tuple<p0##_type, p1##_type, p2##_type>(p0, p1, \ |
| p2)));\ |
| }\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename arg_type>\ |
| operator ::testing::Matcher<arg_type>() const {\ |
| return ::testing::Matcher<arg_type>(\ |
| new gmock_Impl<arg_type>(p0, p1, p2));\ |
| }\ |
| name##MatcherP3(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##MatcherP3);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type>\ |
| inline name##MatcherP3<p0##_type, p1##_type, p2##_type> name(p0##_type p0, \ |
| p1##_type p1, p2##_type p2) {\ |
| return name##MatcherP3<p0##_type, p1##_type, p2##_type>(p0, p1, p2);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type>\ |
| template <typename arg_type>\ |
| bool name##MatcherP3<p0##_type, p1##_type, \ |
| p2##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ |
| arg_type arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ |
| const |
| |
| #define MATCHER_P4(name, p0, p1, p2, p3, description)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type>\ |
| class name##MatcherP4 {\ |
| public:\ |
| template <typename arg_type>\ |
| class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ |
| public:\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3)\ |
| : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3) {}\ |
| virtual bool MatchAndExplain(\ |
| arg_type arg, ::testing::MatchResultListener* result_listener) const;\ |
| virtual void DescribeTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(false);\ |
| }\ |
| virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(true);\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| private:\ |
| ::testing::internal::string FormatDescription(bool negation) const {\ |
| const ::testing::internal::string gmock_description = (description);\ |
| if (!gmock_description.empty())\ |
| return gmock_description;\ |
| return ::testing::internal::FormatMatcherDescription(\ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ |
| ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, \ |
| p3##_type>(p0, p1, p2, p3)));\ |
| }\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename arg_type>\ |
| operator ::testing::Matcher<arg_type>() const {\ |
| return ::testing::Matcher<arg_type>(\ |
| new gmock_Impl<arg_type>(p0, p1, p2, p3));\ |
| }\ |
| name##MatcherP4(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), \ |
| p2(gmock_p2), p3(gmock_p3) {\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##MatcherP4);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type>\ |
| inline name##MatcherP4<p0##_type, p1##_type, p2##_type, \ |
| p3##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, \ |
| p3##_type p3) {\ |
| return name##MatcherP4<p0##_type, p1##_type, p2##_type, p3##_type>(p0, \ |
| p1, p2, p3);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type>\ |
| template <typename arg_type>\ |
| bool name##MatcherP4<p0##_type, p1##_type, p2##_type, \ |
| p3##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ |
| arg_type arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ |
| const |
| |
| #define MATCHER_P5(name, p0, p1, p2, p3, p4, description)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type>\ |
| class name##MatcherP5 {\ |
| public:\ |
| template <typename arg_type>\ |
| class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ |
| public:\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4)\ |
| : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ |
| p4(gmock_p4) {}\ |
| virtual bool MatchAndExplain(\ |
| arg_type arg, ::testing::MatchResultListener* result_listener) const;\ |
| virtual void DescribeTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(false);\ |
| }\ |
| virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(true);\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| private:\ |
| ::testing::internal::string FormatDescription(bool negation) const {\ |
| const ::testing::internal::string gmock_description = (description);\ |
| if (!gmock_description.empty())\ |
| return gmock_description;\ |
| return ::testing::internal::FormatMatcherDescription(\ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ |
| ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type>(p0, p1, p2, p3, p4)));\ |
| }\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename arg_type>\ |
| operator ::testing::Matcher<arg_type>() const {\ |
| return ::testing::Matcher<arg_type>(\ |
| new gmock_Impl<arg_type>(p0, p1, p2, p3, p4));\ |
| }\ |
| name##MatcherP5(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3, \ |
| p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4) {\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##MatcherP5);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type>\ |
| inline name##MatcherP5<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ |
| p4##_type p4) {\ |
| return name##MatcherP5<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type>(p0, p1, p2, p3, p4);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type>\ |
| template <typename arg_type>\ |
| bool name##MatcherP5<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ |
| arg_type arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ |
| const |
| |
| #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type>\ |
| class name##MatcherP6 {\ |
| public:\ |
| template <typename arg_type>\ |
| class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ |
| public:\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5)\ |
| : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ |
| p4(gmock_p4), p5(gmock_p5) {}\ |
| virtual bool MatchAndExplain(\ |
| arg_type arg, ::testing::MatchResultListener* result_listener) const;\ |
| virtual void DescribeTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(false);\ |
| }\ |
| virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(true);\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| private:\ |
| ::testing::internal::string FormatDescription(bool negation) const {\ |
| const ::testing::internal::string gmock_description = (description);\ |
| if (!gmock_description.empty())\ |
| return gmock_description;\ |
| return ::testing::internal::FormatMatcherDescription(\ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ |
| ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type>(p0, p1, p2, p3, p4, p5)));\ |
| }\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename arg_type>\ |
| operator ::testing::Matcher<arg_type>() const {\ |
| return ::testing::Matcher<arg_type>(\ |
| new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5));\ |
| }\ |
| name##MatcherP6(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##MatcherP6);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type>\ |
| inline name##MatcherP6<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, \ |
| p3##_type p3, p4##_type p4, p5##_type p5) {\ |
| return name##MatcherP6<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type>(p0, p1, p2, p3, p4, p5);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type>\ |
| template <typename arg_type>\ |
| bool name##MatcherP6<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ |
| arg_type arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ |
| const |
| |
| #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type>\ |
| class name##MatcherP7 {\ |
| public:\ |
| template <typename arg_type>\ |
| class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ |
| public:\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6)\ |
| : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ |
| p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) {}\ |
| virtual bool MatchAndExplain(\ |
| arg_type arg, ::testing::MatchResultListener* result_listener) const;\ |
| virtual void DescribeTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(false);\ |
| }\ |
| virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(true);\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| private:\ |
| ::testing::internal::string FormatDescription(bool negation) const {\ |
| const ::testing::internal::string gmock_description = (description);\ |
| if (!gmock_description.empty())\ |
| return gmock_description;\ |
| return ::testing::internal::FormatMatcherDescription(\ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ |
| ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type>(p0, p1, p2, p3, p4, p5, \ |
| p6)));\ |
| }\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename arg_type>\ |
| operator ::testing::Matcher<arg_type>() const {\ |
| return ::testing::Matcher<arg_type>(\ |
| new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5, p6));\ |
| }\ |
| name##MatcherP7(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5, p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), \ |
| p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), \ |
| p6(gmock_p6) {\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##MatcherP7);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type>\ |
| inline name##MatcherP7<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type> name(p0##_type p0, p1##_type p1, \ |
| p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ |
| p6##_type p6) {\ |
| return name##MatcherP7<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type>(p0, p1, p2, p3, p4, p5, p6);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type>\ |
| template <typename arg_type>\ |
| bool name##MatcherP7<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ |
| arg_type arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ |
| const |
| |
| #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type>\ |
| class name##MatcherP8 {\ |
| public:\ |
| template <typename arg_type>\ |
| class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ |
| public:\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6, p7##_type gmock_p7)\ |
| : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ |
| p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7) {}\ |
| virtual bool MatchAndExplain(\ |
| arg_type arg, ::testing::MatchResultListener* result_listener) const;\ |
| virtual void DescribeTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(false);\ |
| }\ |
| virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(true);\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| p7##_type p7;\ |
| private:\ |
| ::testing::internal::string FormatDescription(bool negation) const {\ |
| const ::testing::internal::string gmock_description = (description);\ |
| if (!gmock_description.empty())\ |
| return gmock_description;\ |
| return ::testing::internal::FormatMatcherDescription(\ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ |
| ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type>(p0, p1, p2, \ |
| p3, p4, p5, p6, p7)));\ |
| }\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename arg_type>\ |
| operator ::testing::Matcher<arg_type>() const {\ |
| return ::testing::Matcher<arg_type>(\ |
| new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5, p6, p7));\ |
| }\ |
| name##MatcherP8(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5, p6##_type gmock_p6, \ |
| p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ |
| p7(gmock_p7) {\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| p7##_type p7;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##MatcherP8);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type>\ |
| inline name##MatcherP8<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type> name(p0##_type p0, \ |
| p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \ |
| p6##_type p6, p7##_type p7) {\ |
| return name##MatcherP8<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type>(p0, p1, p2, p3, p4, p5, \ |
| p6, p7);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type>\ |
| template <typename arg_type>\ |
| bool name##MatcherP8<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type, \ |
| p7##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ |
| arg_type arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ |
| const |
| |
| #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type>\ |
| class name##MatcherP9 {\ |
| public:\ |
| template <typename arg_type>\ |
| class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ |
| public:\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8)\ |
| : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ |
| p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ |
| p8(gmock_p8) {}\ |
| virtual bool MatchAndExplain(\ |
| arg_type arg, ::testing::MatchResultListener* result_listener) const;\ |
| virtual void DescribeTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(false);\ |
| }\ |
| virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(true);\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| p7##_type p7;\ |
| p8##_type p8;\ |
| private:\ |
| ::testing::internal::string FormatDescription(bool negation) const {\ |
| const ::testing::internal::string gmock_description = (description);\ |
| if (!gmock_description.empty())\ |
| return gmock_description;\ |
| return ::testing::internal::FormatMatcherDescription(\ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ |
| ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type, \ |
| p8##_type>(p0, p1, p2, p3, p4, p5, p6, p7, p8)));\ |
| }\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename arg_type>\ |
| operator ::testing::Matcher<arg_type>() const {\ |
| return ::testing::Matcher<arg_type>(\ |
| new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5, p6, p7, p8));\ |
| }\ |
| name##MatcherP9(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ |
| p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \ |
| p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ |
| p8(gmock_p8) {\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| p7##_type p7;\ |
| p8##_type p8;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##MatcherP9);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type>\ |
| inline name##MatcherP9<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type, \ |
| p8##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ |
| p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, \ |
| p8##_type p8) {\ |
| return name##MatcherP9<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type, p8##_type>(p0, p1, p2, \ |
| p3, p4, p5, p6, p7, p8);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type>\ |
| template <typename arg_type>\ |
| bool name##MatcherP9<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ |
| p5##_type, p6##_type, p7##_type, \ |
| p8##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ |
| arg_type arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ |
| const |
| |
| #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description)\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type, \ |
| typename p9##_type>\ |
| class name##MatcherP10 {\ |
| public:\ |
| template <typename arg_type>\ |
| class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\ |
| public:\ |
| gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ |
| p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ |
| p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ |
| p9##_type gmock_p9)\ |
| : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \ |
| p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \ |
| p8(gmock_p8), p9(gmock_p9) {}\ |
| virtual bool MatchAndExplain(\ |
| arg_type arg, ::testing::MatchResultListener* result_listener) const;\ |
| virtual void DescribeTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(false);\ |
| }\ |
| virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ |
| *gmock_os << FormatDescription(true);\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| p7##_type p7;\ |
| p8##_type p8;\ |
| p9##_type p9;\ |
| private:\ |
| ::testing::internal::string FormatDescription(bool negation) const {\ |
| const ::testing::internal::string gmock_description = (description);\ |
| if (!gmock_description.empty())\ |
| return gmock_description;\ |
| return ::testing::internal::FormatMatcherDescription(\ |
| negation, #name, \ |
| ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ |
| ::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, \ |
| p9##_type>(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)));\ |
| }\ |
| GTEST_DISALLOW_ASSIGN_(gmock_Impl);\ |
| };\ |
| template <typename arg_type>\ |
| operator ::testing::Matcher<arg_type>() const {\ |
| return ::testing::Matcher<arg_type>(\ |
| new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9));\ |
| }\ |
| name##MatcherP10(p0##_type gmock_p0, p1##_type gmock_p1, \ |
| p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \ |
| p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \ |
| p8##_type gmock_p8, p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), \ |
| p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \ |
| p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {\ |
| }\ |
| p0##_type p0;\ |
| p1##_type p1;\ |
| p2##_type p2;\ |
| p3##_type p3;\ |
| p4##_type p4;\ |
| p5##_type p5;\ |
| p6##_type p6;\ |
| p7##_type p7;\ |
| p8##_type p8;\ |
| p9##_type p9;\ |
| private:\ |
| GTEST_DISALLOW_ASSIGN_(name##MatcherP10);\ |
| };\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type, \ |
| typename p9##_type>\ |
| inline name##MatcherP10<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, \ |
| p9##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ |
| p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ |
| p9##_type p9) {\ |
| return name##MatcherP10<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, p9##_type>(p0, \ |
| p1, p2, p3, p4, p5, p6, p7, p8, p9);\ |
| }\ |
| template <typename p0##_type, typename p1##_type, typename p2##_type, \ |
| typename p3##_type, typename p4##_type, typename p5##_type, \ |
| typename p6##_type, typename p7##_type, typename p8##_type, \ |
| typename p9##_type>\ |
| template <typename arg_type>\ |
| bool name##MatcherP10<p0##_type, p1##_type, p2##_type, p3##_type, \ |
| p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, \ |
| p9##_type>::gmock_Impl<arg_type>::MatchAndExplain(\ |
| arg_type arg, \ |
| ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ |
| const |
| |
| #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ |
| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements some actions that depend on gmock-generated-actions.h. |
| |
| #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ |
| #define GMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ |
| |
| #include <algorithm> |
| |
| |
| namespace testing { |
| namespace internal { |
| |
| // Implements the Invoke(f) action. The template argument |
| // FunctionImpl is the implementation type of f, which can be either a |
| // function pointer or a functor. Invoke(f) can be used as an |
| // Action<F> as long as f's type is compatible with F (i.e. f can be |
| // assigned to a tr1::function<F>). |
| template <typename FunctionImpl> |
| class InvokeAction { |
| public: |
| // The c'tor makes a copy of function_impl (either a function |
| // pointer or a functor). |
| explicit InvokeAction(FunctionImpl function_impl) |
| : function_impl_(function_impl) {} |
| |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple& args) { |
| return InvokeHelper<Result, ArgumentTuple>::Invoke(function_impl_, args); |
| } |
| |
| private: |
| FunctionImpl function_impl_; |
| |
| GTEST_DISALLOW_ASSIGN_(InvokeAction); |
| }; |
| |
| // Implements the Invoke(object_ptr, &Class::Method) action. |
| template <class Class, typename MethodPtr> |
| class InvokeMethodAction { |
| public: |
| InvokeMethodAction(Class* obj_ptr, MethodPtr method_ptr) |
| : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} |
| |
| template <typename Result, typename ArgumentTuple> |
| Result Perform(const ArgumentTuple& args) const { |
| return InvokeHelper<Result, ArgumentTuple>::InvokeMethod( |
| obj_ptr_, method_ptr_, args); |
| } |
| |
| private: |
| Class* const obj_ptr_; |
| const MethodPtr method_ptr_; |
| |
| GTEST_DISALLOW_ASSIGN_(InvokeMethodAction); |
| }; |
| |
| // An internal replacement for std::copy which mimics its behavior. This is |
| // necessary because Visual Studio deprecates ::std::copy, issuing warning 4996. |
| // However Visual Studio 2010 and later do not honor #pragmas which disable that |
| // warning. |
| template<typename InputIterator, typename OutputIterator> |
| inline OutputIterator CopyElements(InputIterator first, |
| InputIterator last, |
| OutputIterator output) { |
| for (; first != last; ++first, ++output) { |
| *output = *first; |
| } |
| return output; |
| } |
| |
| } // namespace internal |
| |
| // Various overloads for Invoke(). |
| |
| // Creates an action that invokes 'function_impl' with the mock |
| // function's arguments. |
| template <typename FunctionImpl> |
| PolymorphicAction<internal::InvokeAction<FunctionImpl> > Invoke( |
| FunctionImpl function_impl) { |
| return MakePolymorphicAction( |
| internal::InvokeAction<FunctionImpl>(function_impl)); |
| } |
| |
| // Creates an action that invokes the given method on the given object |
| // with the mock function's arguments. |
| template <class Class, typename MethodPtr> |
| PolymorphicAction<internal::InvokeMethodAction<Class, MethodPtr> > Invoke( |
| Class* obj_ptr, MethodPtr method_ptr) { |
| return MakePolymorphicAction( |
| internal::InvokeMethodAction<Class, MethodPtr>(obj_ptr, method_ptr)); |
| } |
| |
| // WithoutArgs(inner_action) can be used in a mock function with a |
| // non-empty argument list to perform inner_action, which takes no |
| // argument. In other words, it adapts an action accepting no |
| // argument to one that accepts (and ignores) arguments. |
| template <typename InnerAction> |
| inline internal::WithArgsAction<InnerAction> |
| WithoutArgs(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction>(action); |
| } |
| |
| // WithArg<k>(an_action) creates an action that passes the k-th |
| // (0-based) argument of the mock function to an_action and performs |
| // it. It adapts an action accepting one argument to one that accepts |
| // multiple arguments. For convenience, we also provide |
| // WithArgs<k>(an_action) (defined below) as a synonym. |
| template <int k, typename InnerAction> |
| inline internal::WithArgsAction<InnerAction, k> |
| WithArg(const InnerAction& action) { |
| return internal::WithArgsAction<InnerAction, k>(action); |
| } |
| |
| // The ACTION*() macros trigger warning C4100 (unreferenced formal |
| // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in |
| // the macro definition, as the warnings are generated when the macro |
| // is expanded and macro expansion cannot contain #pragma. Therefore |
| // we suppress them here. |
| #ifdef _MSC_VER |
| # pragma warning(push) |
| # pragma warning(disable:4100) |
| #endif |
| |
| // Action ReturnArg<k>() returns the k-th argument of the mock function. |
| ACTION_TEMPLATE(ReturnArg, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_0_VALUE_PARAMS()) { |
| return std::tr1::get<k>(args); |
| } |
| |
| // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the |
| // mock function to *pointer. |
| ACTION_TEMPLATE(SaveArg, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_1_VALUE_PARAMS(pointer)) { |
| *pointer = ::std::tr1::get<k>(args); |
| } |
| |
| // Action SaveArgPointee<k>(pointer) saves the value pointed to |
| // by the k-th (0-based) argument of the mock function to *pointer. |
| ACTION_TEMPLATE(SaveArgPointee, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_1_VALUE_PARAMS(pointer)) { |
| *pointer = *::std::tr1::get<k>(args); |
| } |
| |
| // Action SetArgReferee<k>(value) assigns 'value' to the variable |
| // referenced by the k-th (0-based) argument of the mock function. |
| ACTION_TEMPLATE(SetArgReferee, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_1_VALUE_PARAMS(value)) { |
| typedef typename ::std::tr1::tuple_element<k, args_type>::type argk_type; |
| // Ensures that argument #k is a reference. If you get a compiler |
| // error on the next line, you are using SetArgReferee<k>(value) in |
| // a mock function whose k-th (0-based) argument is not a reference. |
| GTEST_COMPILE_ASSERT_(internal::is_reference<argk_type>::value, |
| SetArgReferee_must_be_used_with_a_reference_argument); |
| ::std::tr1::get<k>(args) = value; |
| } |
| |
| // Action SetArrayArgument<k>(first, last) copies the elements in |
| // source range [first, last) to the array pointed to by the k-th |
| // (0-based) argument, which can be either a pointer or an |
| // iterator. The action does not take ownership of the elements in the |
| // source range. |
| ACTION_TEMPLATE(SetArrayArgument, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_2_VALUE_PARAMS(first, last)) { |
| // Visual Studio deprecates ::std::copy, so we use our own copy in that case. |
| #ifdef _MSC_VER |
| internal::CopyElements(first, last, ::std::tr1::get<k>(args)); |
| #else |
| ::std::copy(first, last, ::std::tr1::get<k>(args)); |
| #endif |
| } |
| |
| // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock |
| // function. |
| ACTION_TEMPLATE(DeleteArg, |
| HAS_1_TEMPLATE_PARAMS(int, k), |
| AND_0_VALUE_PARAMS()) { |
| delete ::std::tr1::get<k>(args); |
| } |
| |
| // This action returns the value pointed to by 'pointer'. |
| ACTION_P(ReturnPointee, pointer) { return *pointer; } |
| |
| // Action Throw(exception) can be used in a mock function of any type |
| // to throw the given exception. Any copyable value can be thrown. |
| #if GTEST_HAS_EXCEPTIONS |
| |
| // Suppresses the 'unreachable code' warning that VC generates in opt modes. |
| # ifdef _MSC_VER |
| # pragma warning(push) // Saves the current warning state. |
| # pragma warning(disable:4702) // Temporarily disables warning 4702. |
| # endif |
| ACTION_P(Throw, exception) { throw exception; } |
| # ifdef _MSC_VER |
| # pragma warning(pop) // Restores the warning state. |
| # endif |
| |
| #endif // GTEST_HAS_EXCEPTIONS |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) |
| #endif |
| |
| } // namespace testing |
| |
| #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ |
| // Copyright 2013, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: marcus.boerger@google.com (Marcus Boerger) |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file implements some matchers that depend on gmock-generated-matchers.h. |
| // |
| // Note that tests are implemented in gmock-matchers_test.cc rather than |
| // gmock-more-matchers-test.cc. |
| |
| #ifndef GMOCK_GMOCK_MORE_MATCHERS_H_ |
| #define GMOCK_GMOCK_MORE_MATCHERS_H_ |
| |
| |
| namespace testing { |
| |
| // Defines a matcher that matches an empty container. The container must |
| // support both size() and empty(), which all STL-like containers provide. |
| MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") { |
| if (arg.empty()) { |
| return true; |
| } |
| *result_listener << "whose size is " << arg.size(); |
| return false; |
| } |
| |
| } // namespace testing |
| |
| #endif // GMOCK_GMOCK_MORE_MATCHERS_H_ |
| |
| namespace testing { |
| |
| // Declares Google Mock flags that we want a user to use programmatically. |
| GMOCK_DECLARE_bool_(catch_leaked_mocks); |
| GMOCK_DECLARE_string_(verbose); |
| |
| // Initializes Google Mock. This must be called before running the |
| // tests. In particular, it parses the command line for the flags |
| // that Google Mock recognizes. Whenever a Google Mock flag is seen, |
| // it is removed from argv, and *argc is decremented. |
| // |
| // No value is returned. Instead, the Google Mock flag variables are |
| // updated. |
| // |
| // Since Google Test is needed for Google Mock to work, this function |
| // also initializes Google Test and parses its flags, if that hasn't |
| // been done. |
| GTEST_API_ void InitGoogleMock(int* argc, char** argv); |
| |
| // This overloaded version can be used in Windows programs compiled in |
| // UNICODE mode. |
| GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv); |
| |
| } // namespace testing |
| |
| #endif // GMOCK_INCLUDE_GMOCK_GMOCK_H_ |