| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | //         keir@google.com (Keir Mierle) | 
 | // | 
 | // The Problem object is used to build and hold least squares problems. | 
 |  | 
 | #ifndef CERES_PUBLIC_PROBLEM_H_ | 
 | #define CERES_PUBLIC_PROBLEM_H_ | 
 |  | 
 | #include <array> | 
 | #include <cstddef> | 
 | #include <map> | 
 | #include <memory> | 
 | #include <set> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/context.h" | 
 | #include "ceres/internal/disable_warnings.h" | 
 | #include "ceres/internal/port.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 |  | 
 | class CostFunction; | 
 | class EvaluationCallback; | 
 | class LossFunction; | 
 | class LocalParameterization; | 
 | class Solver; | 
 | struct CRSMatrix; | 
 |  | 
 | namespace internal { | 
 | class Preprocessor; | 
 | class ProblemImpl; | 
 | class ParameterBlock; | 
 | class ResidualBlock; | 
 | }  // namespace internal | 
 |  | 
 | // A ResidualBlockId is an opaque handle clients can use to remove residual | 
 | // blocks from a Problem after adding them. | 
 | typedef internal::ResidualBlock* ResidualBlockId; | 
 |  | 
 | // A class to represent non-linear least squares problems. Such | 
 | // problems have a cost function that is a sum of error terms (known | 
 | // as "residuals"), where each residual is a function of some subset | 
 | // of the parameters. The cost function takes the form | 
 | // | 
 | //    N    1 | 
 | //   SUM  --- loss( || r_i1, r_i2,..., r_ik ||^2  ), | 
 | //   i=1   2 | 
 | // | 
 | // where | 
 | // | 
 | //   r_ij     is residual number i, component j; the residual is a | 
 | //            function of some subset of the parameters x1...xk. For | 
 | //            example, in a structure from motion problem a residual | 
 | //            might be the difference between a measured point in an | 
 | //            image and the reprojected position for the matching | 
 | //            camera, point pair. The residual would have two | 
 | //            components, error in x and error in y. | 
 | // | 
 | //   loss(y)  is the loss function; for example, squared error or | 
 | //            Huber L1 loss. If loss(y) = y, then the cost function is | 
 | //            non-robustified least squares. | 
 | // | 
 | // This class is specifically designed to address the important subset | 
 | // of "sparse" least squares problems, where each component of the | 
 | // residual depends only on a small number number of parameters, even | 
 | // though the total number of residuals and parameters may be very | 
 | // large. This property affords tremendous gains in scale, allowing | 
 | // efficient solving of large problems that are otherwise | 
 | // inaccessible. | 
 | // | 
 | // The canonical example of a sparse least squares problem is | 
 | // "structure-from-motion" (SFM), where the parameters are points and | 
 | // cameras, and residuals are reprojection errors. Typically a single | 
 | // residual will depend only on 9 parameters (3 for the point, 6 for | 
 | // the camera). | 
 | // | 
 | // To create a least squares problem, use the AddResidualBlock() and | 
 | // AddParameterBlock() methods, documented below. Here is an example least | 
 | // squares problem containing 3 parameter blocks of sizes 3, 4 and 5 | 
 | // respectively and two residual terms of size 2 and 6: | 
 | // | 
 | //   double x1[] = { 1.0, 2.0, 3.0 }; | 
 | //   double x2[] = { 1.0, 2.0, 3.0, 5.0 }; | 
 | //   double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 }; | 
 | // | 
 | //   Problem problem; | 
 | // | 
 | //   problem.AddResidualBlock(new MyUnaryCostFunction(...), nullptr, x1); | 
 | //   problem.AddResidualBlock(new MyBinaryCostFunction(...), nullptr, x2, x3); | 
 | // | 
 | // Please see cost_function.h for details of the CostFunction object. | 
 | class CERES_EXPORT Problem { | 
 |  public: | 
 |   struct CERES_EXPORT Options { | 
 |     // These flags control whether the Problem object owns the cost | 
 |     // functions, loss functions, and parameterizations passed into | 
 |     // the Problem. If set to TAKE_OWNERSHIP, then the problem object | 
 |     // will delete the corresponding cost or loss functions on | 
 |     // destruction. The destructor is careful to delete the pointers | 
 |     // only once, since sharing cost/loss/parameterizations is | 
 |     // allowed. | 
 |     Ownership cost_function_ownership = TAKE_OWNERSHIP; | 
 |     Ownership loss_function_ownership = TAKE_OWNERSHIP; | 
 |     Ownership local_parameterization_ownership = TAKE_OWNERSHIP; | 
 |  | 
 |     // If true, trades memory for faster RemoveResidualBlock() and | 
 |     // RemoveParameterBlock() operations. | 
 |     // | 
 |     // By default, RemoveParameterBlock() and RemoveResidualBlock() take time | 
 |     // proportional to the size of the entire problem.  If you only ever remove | 
 |     // parameters or residuals from the problem occasionally, this might be | 
 |     // acceptable.  However, if you have memory to spare, enable this option to | 
 |     // make RemoveParameterBlock() take time proportional to the number of | 
 |     // residual blocks that depend on it, and RemoveResidualBlock() take (on | 
 |     // average) constant time. | 
 |     // | 
 |     // The increase in memory usage is twofold: an additional hash set per | 
 |     // parameter block containing all the residuals that depend on the parameter | 
 |     // block; and a hash set in the problem containing all residuals. | 
 |     bool enable_fast_removal = false; | 
 |  | 
 |     // By default, Ceres performs a variety of safety checks when constructing | 
 |     // the problem. There is a small but measurable performance penalty to | 
 |     // these checks, typically around 5% of construction time. If you are sure | 
 |     // your problem construction is correct, and 5% of the problem construction | 
 |     // time is truly an overhead you want to avoid, then you can set | 
 |     // disable_all_safety_checks to true. | 
 |     // | 
 |     // WARNING: Do not set this to true, unless you are absolutely sure of what | 
 |     // you are doing. | 
 |     bool disable_all_safety_checks = false; | 
 |  | 
 |     // A Ceres global context to use for solving this problem. This may help to | 
 |     // reduce computation time as Ceres can reuse expensive objects to create. | 
 |     // The context object can be nullptr, in which case Ceres may create one. | 
 |     // | 
 |     // Ceres does NOT take ownership of the pointer. | 
 |     Context* context = nullptr; | 
 |  | 
 |     // Using this callback interface, Ceres can notify you when it is | 
 |     // about to evaluate the residuals or jacobians. With the | 
 |     // callback, you can share computation between residual blocks by | 
 |     // doing the shared computation in | 
 |     // EvaluationCallback::PrepareForEvaluation() before Ceres calls | 
 |     // CostFunction::Evaluate(). It also enables caching results | 
 |     // between a pure residual evaluation and a residual & jacobian | 
 |     // evaluation. | 
 |     // | 
 |     // Problem DOES NOT take ownership of the callback. | 
 |     // | 
 |     // NOTE: Evaluation callbacks are incompatible with inner | 
 |     // iterations. So calling Solve with | 
 |     // Solver::Options::use_inner_iterations = true on a Problem with | 
 |     // a non-null evaluation callback is an error. | 
 |     EvaluationCallback* evaluation_callback = nullptr; | 
 |   }; | 
 |  | 
 |   // The default constructor is equivalent to the | 
 |   // invocation Problem(Problem::Options()). | 
 |   Problem(); | 
 |   explicit Problem(const Options& options); | 
 |   Problem(const Problem&) = delete; | 
 |   void operator=(const Problem&) = delete; | 
 |  | 
 |   ~Problem(); | 
 |  | 
 |   // Add a residual block to the overall cost function. The cost | 
 |   // function carries with its information about the sizes of the | 
 |   // parameter blocks it expects. The function checks that these match | 
 |   // the sizes of the parameter blocks listed in parameter_blocks. The | 
 |   // program aborts if a mismatch is detected. loss_function can be | 
 |   // nullptr, in which case the cost of the term is just the squared norm | 
 |   // of the residuals. | 
 |   // | 
 |   // The user has the option of explicitly adding the parameter blocks | 
 |   // using AddParameterBlock. This causes additional correctness | 
 |   // checking; however, AddResidualBlock implicitly adds the parameter | 
 |   // blocks if they are not present, so calling AddParameterBlock | 
 |   // explicitly is not required. | 
 |   // | 
 |   // The Problem object by default takes ownership of the | 
 |   // cost_function and loss_function pointers. These objects remain | 
 |   // live for the life of the Problem object. If the user wishes to | 
 |   // keep control over the destruction of these objects, then they can | 
 |   // do this by setting the corresponding enums in the Options struct. | 
 |   // | 
 |   // Note: Even though the Problem takes ownership of cost_function | 
 |   // and loss_function, it does not preclude the user from re-using | 
 |   // them in another residual block. The destructor takes care to call | 
 |   // delete on each cost_function or loss_function pointer only once, | 
 |   // regardless of how many residual blocks refer to them. | 
 |   // | 
 |   // Example usage: | 
 |   // | 
 |   //   double x1[] = {1.0, 2.0, 3.0}; | 
 |   //   double x2[] = {1.0, 2.0, 5.0, 6.0}; | 
 |   //   double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0}; | 
 |   // | 
 |   //   Problem problem; | 
 |   // | 
 |   //   problem.AddResidualBlock(new MyUnaryCostFunction(...), nullptr, x1); | 
 |   //   problem.AddResidualBlock(new MyBinaryCostFunction(...), nullptr, x2, x1); | 
 |   // | 
 |   // Add a residual block by listing the parameter block pointers | 
 |   // directly instead of wapping them in a container. | 
 |   template <typename... Ts> | 
 |   ResidualBlockId AddResidualBlock(CostFunction* cost_function, | 
 |                                    LossFunction* loss_function, | 
 |                                    double* x0, | 
 |                                    Ts*... xs) { | 
 |     const std::array<double*, sizeof...(Ts) + 1> parameter_blocks{{x0, xs...}}; | 
 |     return AddResidualBlock(cost_function, loss_function, | 
 |                             parameter_blocks.data(), | 
 |                             static_cast<int>(parameter_blocks.size())); | 
 |   } | 
 |  | 
 |   // Add a residual block by providing a vector of parameter blocks. | 
 |   ResidualBlockId AddResidualBlock( | 
 |       CostFunction* cost_function, | 
 |       LossFunction* loss_function, | 
 |       const std::vector<double*>& parameter_blocks); | 
 |  | 
 |   // Add a residual block by providing a pointer to the parameter block array | 
 |   // and the number of parameter blocks. | 
 |   ResidualBlockId AddResidualBlock( | 
 |       CostFunction* cost_function, | 
 |       LossFunction* loss_function, | 
 |       double* const* const parameter_blocks, | 
 |       int num_parameter_blocks); | 
 |  | 
 |   // Add a parameter block with appropriate size to the problem. | 
 |   // Repeated calls with the same arguments are ignored. Repeated | 
 |   // calls with the same double pointer but a different size results | 
 |   // in undefined behaviour. | 
 |   void AddParameterBlock(double* values, int size); | 
 |  | 
 |   // Add a parameter block with appropriate size and parameterization | 
 |   // to the problem. Repeated calls with the same arguments are | 
 |   // ignored. Repeated calls with the same double pointer but a | 
 |   // different size results in undefined behaviour. | 
 |   void AddParameterBlock(double* values, | 
 |                          int size, | 
 |                          LocalParameterization* local_parameterization); | 
 |  | 
 |   // Remove a parameter block from the problem. The parameterization of the | 
 |   // parameter block, if it exists, will persist until the deletion of the | 
 |   // problem (similar to cost/loss functions in residual block removal). Any | 
 |   // residual blocks that depend on the parameter are also removed, as | 
 |   // described above in RemoveResidualBlock(). | 
 |   // | 
 |   // If Problem::Options::enable_fast_removal is true, then the | 
 |   // removal is fast (almost constant time). Otherwise, removing a parameter | 
 |   // block will incur a scan of the entire Problem object. | 
 |   // | 
 |   // WARNING: Removing a residual or parameter block will destroy the implicit | 
 |   // ordering, rendering the jacobian or residuals returned from the solver | 
 |   // uninterpretable. If you depend on the evaluated jacobian, do not use | 
 |   // remove! This may change in a future release. | 
 |   void RemoveParameterBlock(const double* values); | 
 |  | 
 |   // Remove a residual block from the problem. Any parameters that the residual | 
 |   // block depends on are not removed. The cost and loss functions for the | 
 |   // residual block will not get deleted immediately; won't happen until the | 
 |   // problem itself is deleted. | 
 |   // | 
 |   // WARNING: Removing a residual or parameter block will destroy the implicit | 
 |   // ordering, rendering the jacobian or residuals returned from the solver | 
 |   // uninterpretable. If you depend on the evaluated jacobian, do not use | 
 |   // remove! This may change in a future release. | 
 |   void RemoveResidualBlock(ResidualBlockId residual_block); | 
 |  | 
 |   // Hold the indicated parameter block constant during optimization. | 
 |   void SetParameterBlockConstant(const double* values); | 
 |  | 
 |   // Allow the indicated parameter block to vary during optimization. | 
 |   void SetParameterBlockVariable(double* values); | 
 |  | 
 |   // Returns true if a parameter block is set constant, and false otherwise. | 
 |   bool IsParameterBlockConstant(const double* values) const; | 
 |  | 
 |   // Set the local parameterization for one of the parameter blocks. | 
 |   // The local_parameterization is owned by the Problem by default. It | 
 |   // is acceptable to set the same parameterization for multiple | 
 |   // parameters; the destructor is careful to delete local | 
 |   // parameterizations only once. The local parameterization can only | 
 |   // be set once per parameter, and cannot be changed once set. | 
 |   void SetParameterization(double* values, | 
 |                            LocalParameterization* local_parameterization); | 
 |  | 
 |   // Get the local parameterization object associated with this | 
 |   // parameter block. If there is no parameterization object | 
 |   // associated then nullptr is returned. | 
 |   const LocalParameterization* GetParameterization(const double* values) const; | 
 |  | 
 |   // Set the lower/upper bound for the parameter at position "index". | 
 |   void SetParameterLowerBound(double* values, int index, double lower_bound); | 
 |   void SetParameterUpperBound(double* values, int index, double upper_bound); | 
 |  | 
 |   // Get the lower/upper bound for the parameter at position | 
 |   // "index". If the parameter is not bounded by the user, then its | 
 |   // lower bound is -std::numeric_limits<double>::max() and upper | 
 |   // bound is std::numeric_limits<double>::max(). | 
 |   double GetParameterLowerBound(const double* values, int index) const; | 
 |   double GetParameterUpperBound(const double* values, int index) const; | 
 |  | 
 |   // Number of parameter blocks in the problem. Always equals | 
 |   // parameter_blocks().size() and parameter_block_sizes().size(). | 
 |   int NumParameterBlocks() const; | 
 |  | 
 |   // The size of the parameter vector obtained by summing over the | 
 |   // sizes of all the parameter blocks. | 
 |   int NumParameters() const; | 
 |  | 
 |   // Number of residual blocks in the problem. Always equals | 
 |   // residual_blocks().size(). | 
 |   int NumResidualBlocks() const; | 
 |  | 
 |   // The size of the residual vector obtained by summing over the | 
 |   // sizes of all of the residual blocks. | 
 |   int NumResiduals() const; | 
 |  | 
 |   // The size of the parameter block. | 
 |   int ParameterBlockSize(const double* values) const; | 
 |  | 
 |   // The size of local parameterization for the parameter block. If | 
 |   // there is no local parameterization associated with this parameter | 
 |   // block, then ParameterBlockLocalSize = ParameterBlockSize. | 
 |   int ParameterBlockLocalSize(const double* values) const; | 
 |  | 
 |   // Is the given parameter block present in this problem or not? | 
 |   bool HasParameterBlock(const double* values) const; | 
 |  | 
 |   // Fills the passed parameter_blocks vector with pointers to the | 
 |   // parameter blocks currently in the problem. After this call, | 
 |   // parameter_block.size() == NumParameterBlocks. | 
 |   void GetParameterBlocks(std::vector<double*>* parameter_blocks) const; | 
 |  | 
 |   // Fills the passed residual_blocks vector with pointers to the | 
 |   // residual blocks currently in the problem. After this call, | 
 |   // residual_blocks.size() == NumResidualBlocks. | 
 |   void GetResidualBlocks(std::vector<ResidualBlockId>* residual_blocks) const; | 
 |  | 
 |   // Get all the parameter blocks that depend on the given residual block. | 
 |   void GetParameterBlocksForResidualBlock( | 
 |       const ResidualBlockId residual_block, | 
 |       std::vector<double*>* parameter_blocks) const; | 
 |  | 
 |   // Get the CostFunction for the given residual block. | 
 |   const CostFunction* GetCostFunctionForResidualBlock( | 
 |       const ResidualBlockId residual_block) const; | 
 |  | 
 |   // Get the LossFunction for the given residual block. Returns nullptr | 
 |   // if no loss function is associated with this residual block. | 
 |   const LossFunction* GetLossFunctionForResidualBlock( | 
 |       const ResidualBlockId residual_block) const; | 
 |  | 
 |   // Get all the residual blocks that depend on the given parameter block. | 
 |   // | 
 |   // If Problem::Options::enable_fast_removal is true, then | 
 |   // getting the residual blocks is fast and depends only on the number of | 
 |   // residual blocks. Otherwise, getting the residual blocks for a parameter | 
 |   // block will incur a scan of the entire Problem object. | 
 |   void GetResidualBlocksForParameterBlock( | 
 |       const double* values, | 
 |       std::vector<ResidualBlockId>* residual_blocks) const; | 
 |  | 
 |   // Options struct to control Problem::Evaluate. | 
 |   struct EvaluateOptions { | 
 |     // The set of parameter blocks for which evaluation should be | 
 |     // performed. This vector determines the order that parameter | 
 |     // blocks occur in the gradient vector and in the columns of the | 
 |     // jacobian matrix. If parameter_blocks is empty, then it is | 
 |     // assumed to be equal to vector containing ALL the parameter | 
 |     // blocks.  Generally speaking the parameter blocks will occur in | 
 |     // the order in which they were added to the problem. But, this | 
 |     // may change if the user removes any parameter blocks from the | 
 |     // problem. | 
 |     // | 
 |     // NOTE: This vector should contain the same pointers as the ones | 
 |     // used to add parameter blocks to the Problem. These parameter | 
 |     // block should NOT point to new memory locations. Bad things will | 
 |     // happen otherwise. | 
 |     std::vector<double*> parameter_blocks; | 
 |  | 
 |     // The set of residual blocks to evaluate. This vector determines | 
 |     // the order in which the residuals occur, and how the rows of the | 
 |     // jacobian are ordered. If residual_blocks is empty, then it is | 
 |     // assumed to be equal to the vector containing ALL the residual | 
 |     // blocks. Generally speaking the residual blocks will occur in | 
 |     // the order in which they were added to the problem. But, this | 
 |     // may change if the user removes any residual blocks from the | 
 |     // problem. | 
 |     std::vector<ResidualBlockId> residual_blocks; | 
 |  | 
 |     // Even though the residual blocks in the problem may contain loss | 
 |     // functions, setting apply_loss_function to false will turn off | 
 |     // the application of the loss function to the output of the cost | 
 |     // function. This is of use for example if the user wishes to | 
 |     // analyse the solution quality by studying the distribution of | 
 |     // residuals before and after the solve. | 
 |     bool apply_loss_function = true; | 
 |  | 
 |     int num_threads = 1; | 
 |   }; | 
 |  | 
 |   // Evaluate Problem. Any of the output pointers can be nullptr. Which | 
 |   // residual blocks and parameter blocks are used is controlled by | 
 |   // the EvaluateOptions struct above. | 
 |   // | 
 |   // Note 1: The evaluation will use the values stored in the memory | 
 |   // locations pointed to by the parameter block pointers used at the | 
 |   // time of the construction of the problem. i.e., | 
 |   // | 
 |   //   Problem problem; | 
 |   //   double x = 1; | 
 |   //   problem.AddResidualBlock(new MyCostFunction, nullptr, &x); | 
 |   // | 
 |   //   double cost = 0.0; | 
 |   //   problem.Evaluate(Problem::EvaluateOptions(), &cost, nullptr, nullptr, nullptr); | 
 |   // | 
 |   // The cost is evaluated at x = 1. If you wish to evaluate the | 
 |   // problem at x = 2, then | 
 |   // | 
 |   //    x = 2; | 
 |   //    problem.Evaluate(Problem::EvaluateOptions(), &cost, nullptr, nullptr, nullptr); | 
 |   // | 
 |   // is the way to do so. | 
 |   // | 
 |   // Note 2: If no local parameterizations are used, then the size of | 
 |   // the gradient vector (and the number of columns in the jacobian) | 
 |   // is the sum of the sizes of all the parameter blocks. If a | 
 |   // parameter block has a local parameterization, then it contributes | 
 |   // "LocalSize" entries to the gradient vector (and the number of | 
 |   // columns in the jacobian). | 
 |   // | 
 |   // Note 3: This function cannot be called while the problem is being | 
 |   // solved, for example it cannot be called from an IterationCallback | 
 |   // at the end of an iteration during a solve. | 
 |   // | 
 |   // Note 4: If an EvaluationCallback is associated with the problem, | 
 |   // then its PrepareForEvaluation method will be called everytime | 
 |   // this method is called with new_point = true. | 
 |   bool Evaluate(const EvaluateOptions& options, | 
 |                 double* cost, | 
 |                 std::vector<double>* residuals, | 
 |                 std::vector<double>* gradient, | 
 |                 CRSMatrix* jacobian); | 
 |  | 
 |   // Evaluates the residual block, storing the scalar cost in *cost, | 
 |   // the residual components in *residuals, and the jacobians between | 
 |   // the parameters and residuals in jacobians[i], in row-major order. | 
 |   // | 
 |   // If residuals is nullptr, the residuals are not computed. | 
 |   // | 
 |   // If jacobians is nullptr, no Jacobians are computed. If | 
 |   // jacobians[i] is nullptr, then the Jacobian for that parameter | 
 |   // block is not computed. | 
 |   // | 
 |   // It is not okay to request the Jacobian w.r.t a parameter block | 
 |   // that is constant. | 
 |   // | 
 |   // The return value indicates the success or failure. Even if the | 
 |   // function returns false, the caller should expect the output | 
 |   // memory locations to have been modified. | 
 |   // | 
 |   // The returned cost and jacobians have had robustification and | 
 |   // local parameterizations applied already; for example, the | 
 |   // jacobian for a 4-dimensional quaternion parameter using the | 
 |   // "QuaternionParameterization" is num_residuals by 3 instead of | 
 |   // num_residuals by 4. | 
 |   // | 
 |   // apply_loss_function as the name implies allows the user to switch | 
 |   // the application of the loss function on and off. | 
 |   // | 
 |   // WARNING: If an EvaluationCallback is associated with the problem | 
 |   // then it is the user's responsibility to call it before calling | 
 |   // this method. | 
 |   // | 
 |   // This is because, if the user calls this method multiple times, we | 
 |   // cannot tell if the underlying parameter blocks have changed | 
 |   // between calls or not. So if EvaluateResidualBlock was responsible | 
 |   // for calling the EvaluationCallback, it will have to do it | 
 |   // everytime it is called. Which makes the common case where the | 
 |   // parameter blocks do not change, inefficient. So we leave it to | 
 |   // the user to call the EvaluationCallback as needed. | 
 |   bool EvaluateResidualBlock(ResidualBlockId residual_block_id, | 
 |                              bool apply_loss_function, | 
 |                              double* cost, | 
 |                              double* residuals, | 
 |                              double** jacobians) const; | 
 |  private: | 
 |   friend class Solver; | 
 |   friend class Covariance; | 
 |   std::unique_ptr<internal::ProblemImpl> impl_; | 
 | }; | 
 |  | 
 | }  // namespace ceres | 
 |  | 
 | #include "ceres/internal/reenable_warnings.h" | 
 |  | 
 | #endif  // CERES_PUBLIC_PROBLEM_H_ |