| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2022 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/block_random_access_sparse_matrix.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <memory> | 
 | #include <set> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/internal/export.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | BlockRandomAccessSparseMatrix::BlockRandomAccessSparseMatrix( | 
 |     const std::vector<Block>& blocks, | 
 |     const std::set<std::pair<int, int>>& block_pairs) | 
 |     : kMaxRowBlocks(10 * 1000 * 1000), blocks_(blocks) { | 
 |   CHECK_LT(blocks.size(), kMaxRowBlocks); | 
 |  | 
 |   const int num_cols = NumScalarEntries(blocks); | 
 |  | 
 |   // Count the number of scalar non-zero entries and build the layout | 
 |   // object for looking into the values array of the | 
 |   // TripletSparseMatrix. | 
 |   int num_nonzeros = 0; | 
 |   for (const auto& block_pair : block_pairs) { | 
 |     const int row_block_size = blocks_[block_pair.first].size; | 
 |     const int col_block_size = blocks_[block_pair.second].size; | 
 |     num_nonzeros += row_block_size * col_block_size; | 
 |   } | 
 |  | 
 |   VLOG(1) << "Matrix Size [" << num_cols << "," << num_cols << "] " | 
 |           << num_nonzeros; | 
 |  | 
 |   tsm_ = | 
 |       std::make_unique<TripletSparseMatrix>(num_cols, num_cols, num_nonzeros); | 
 |   tsm_->set_num_nonzeros(num_nonzeros); | 
 |   int* rows = tsm_->mutable_rows(); | 
 |   int* cols = tsm_->mutable_cols(); | 
 |   double* values = tsm_->mutable_values(); | 
 |  | 
 |   int pos = 0; | 
 |   for (const auto& block_pair : block_pairs) { | 
 |     const int row_block_size = blocks_[block_pair.first].size; | 
 |     const int col_block_size = blocks_[block_pair.second].size; | 
 |     cell_values_.emplace_back(block_pair, values + pos); | 
 |     layout_[IntPairToLong(block_pair.first, block_pair.second)] = | 
 |         new CellInfo(values + pos); | 
 |     pos += row_block_size * col_block_size; | 
 |   } | 
 |  | 
 |   // Fill the sparsity pattern of the underlying matrix. | 
 |   for (const auto& block_pair : block_pairs) { | 
 |     const int row_block_id = block_pair.first; | 
 |     const int col_block_id = block_pair.second; | 
 |     const int row_block_size = blocks_[row_block_id].size; | 
 |     const int col_block_size = blocks_[col_block_id].size; | 
 |     int pos = | 
 |         layout_[IntPairToLong(row_block_id, col_block_id)]->values - values; | 
 |     for (int r = 0; r < row_block_size; ++r) { | 
 |       for (int c = 0; c < col_block_size; ++c, ++pos) { | 
 |         rows[pos] = blocks_[row_block_id].position + r; | 
 |         cols[pos] = blocks_[col_block_id].position + c; | 
 |         values[pos] = 1.0; | 
 |         DCHECK_LT(rows[pos], tsm_->num_rows()); | 
 |         DCHECK_LT(cols[pos], tsm_->num_rows()); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Assume that the user does not hold any locks on any cell blocks | 
 | // when they are calling SetZero. | 
 | BlockRandomAccessSparseMatrix::~BlockRandomAccessSparseMatrix() { | 
 |   for (const auto& entry : layout_) { | 
 |     delete entry.second; | 
 |   } | 
 | } | 
 |  | 
 | CellInfo* BlockRandomAccessSparseMatrix::GetCell(int row_block_id, | 
 |                                                  int col_block_id, | 
 |                                                  int* row, | 
 |                                                  int* col, | 
 |                                                  int* row_stride, | 
 |                                                  int* col_stride) { | 
 |   const auto it = layout_.find(IntPairToLong(row_block_id, col_block_id)); | 
 |   if (it == layout_.end()) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // Each cell is stored contiguously as its own little dense matrix. | 
 |   *row = 0; | 
 |   *col = 0; | 
 |   *row_stride = blocks_[row_block_id].size; | 
 |   *col_stride = blocks_[col_block_id].size; | 
 |   return it->second; | 
 | } | 
 |  | 
 | // Assume that the user does not hold any locks on any cell blocks | 
 | // when they are calling SetZero. | 
 | void BlockRandomAccessSparseMatrix::SetZero() { | 
 |   if (tsm_->num_nonzeros()) { | 
 |     VectorRef(tsm_->mutable_values(), tsm_->num_nonzeros()).setZero(); | 
 |   } | 
 | } | 
 |  | 
 | void BlockRandomAccessSparseMatrix::SymmetricRightMultiplyAndAccumulate( | 
 |     const double* x, double* y) const { | 
 |   for (const auto& cell_position_and_data : cell_values_) { | 
 |     const int row = cell_position_and_data.first.first; | 
 |     const int row_block_size = blocks_[row].size; | 
 |     const int row_block_pos = blocks_[row].position; | 
 |  | 
 |     const int col = cell_position_and_data.first.second; | 
 |     const int col_block_size = blocks_[col].size; | 
 |     const int col_block_pos = blocks_[col].position; | 
 |  | 
 |     MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
 |         cell_position_and_data.second, | 
 |         row_block_size, | 
 |         col_block_size, | 
 |         x + col_block_pos, | 
 |         y + row_block_pos); | 
 |  | 
 |     // Since the matrix is symmetric, but only the upper triangular | 
 |     // part is stored, if the block being accessed is not a diagonal | 
 |     // block, then use the same block to do the corresponding lower | 
 |     // triangular multiply also. | 
 |     if (row != col) { | 
 |       MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( | 
 |           cell_position_and_data.second, | 
 |           row_block_size, | 
 |           col_block_size, | 
 |           x + row_block_pos, | 
 |           y + col_block_pos); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |