| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2022 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Authors: keir@google.com (Keir Mierle), | 
 | //          dgossow@google.com (David Gossow) | 
 |  | 
 | #include "ceres/gradient_checking_cost_function.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | #include <cstdint> | 
 | #include <memory> | 
 | #include <numeric> | 
 | #include <string> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | #include "ceres/dynamic_numeric_diff_cost_function.h" | 
 | #include "ceres/gradient_checker.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/parameter_block.h" | 
 | #include "ceres/problem.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/program.h" | 
 | #include "ceres/residual_block.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | using std::abs; | 
 | using std::max; | 
 | using std::string; | 
 | using std::vector; | 
 |  | 
 | namespace { | 
 |  | 
 | class GradientCheckingCostFunction final : public CostFunction { | 
 |  public: | 
 |   GradientCheckingCostFunction(const CostFunction* function, | 
 |                                const std::vector<const Manifold*>* manifolds, | 
 |                                const NumericDiffOptions& options, | 
 |                                double relative_precision, | 
 |                                string extra_info, | 
 |                                GradientCheckingIterationCallback* callback) | 
 |       : function_(function), | 
 |         gradient_checker_(function, manifolds, options), | 
 |         relative_precision_(relative_precision), | 
 |         extra_info_(std::move(extra_info)), | 
 |         callback_(callback) { | 
 |     CHECK(callback_ != nullptr); | 
 |     const vector<int32_t>& parameter_block_sizes = | 
 |         function->parameter_block_sizes(); | 
 |     *mutable_parameter_block_sizes() = parameter_block_sizes; | 
 |     set_num_residuals(function->num_residuals()); | 
 |   } | 
 |  | 
 |   bool Evaluate(double const* const* parameters, | 
 |                 double* residuals, | 
 |                 double** jacobians) const final { | 
 |     if (!jacobians) { | 
 |       // Nothing to check in this case; just forward. | 
 |       return function_->Evaluate(parameters, residuals, nullptr); | 
 |     } | 
 |  | 
 |     GradientChecker::ProbeResults results; | 
 |     bool okay = | 
 |         gradient_checker_.Probe(parameters, relative_precision_, &results); | 
 |  | 
 |     // If the cost function returned false, there's nothing we can say about | 
 |     // the gradients. | 
 |     if (results.return_value == false) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Copy the residuals. | 
 |     const int num_residuals = function_->num_residuals(); | 
 |     MatrixRef(residuals, num_residuals, 1) = results.residuals; | 
 |  | 
 |     // Copy the original jacobian blocks into the jacobians array. | 
 |     const vector<int32_t>& block_sizes = function_->parameter_block_sizes(); | 
 |     for (int k = 0; k < block_sizes.size(); k++) { | 
 |       if (jacobians[k] != nullptr) { | 
 |         MatrixRef(jacobians[k], | 
 |                   results.jacobians[k].rows(), | 
 |                   results.jacobians[k].cols()) = results.jacobians[k]; | 
 |       } | 
 |     } | 
 |  | 
 |     if (!okay) { | 
 |       std::string error_log = | 
 |           "Gradient Error detected!\nExtra info for this residual: " + | 
 |           extra_info_ + "\n" + results.error_log; | 
 |       callback_->SetGradientErrorDetected(error_log); | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   const CostFunction* function_; | 
 |   GradientChecker gradient_checker_; | 
 |   double relative_precision_; | 
 |   string extra_info_; | 
 |   GradientCheckingIterationCallback* callback_; | 
 | }; | 
 |  | 
 | }  // namespace | 
 |  | 
 | GradientCheckingIterationCallback::GradientCheckingIterationCallback() | 
 |     : gradient_error_detected_(false) {} | 
 |  | 
 | CallbackReturnType GradientCheckingIterationCallback::operator()( | 
 |     const IterationSummary& summary) { | 
 |   if (gradient_error_detected_) { | 
 |     LOG(ERROR) << "Gradient error detected. Terminating solver."; | 
 |     return SOLVER_ABORT; | 
 |   } | 
 |   return SOLVER_CONTINUE; | 
 | } | 
 |  | 
 | void GradientCheckingIterationCallback::SetGradientErrorDetected( | 
 |     std::string& error_log) { | 
 |   std::lock_guard<std::mutex> l(mutex_); | 
 |   gradient_error_detected_ = true; | 
 |   error_log_ += "\n" + error_log; | 
 | } | 
 |  | 
 | std::unique_ptr<CostFunction> CreateGradientCheckingCostFunction( | 
 |     const CostFunction* cost_function, | 
 |     const std::vector<const Manifold*>* manifolds, | 
 |     double relative_step_size, | 
 |     double relative_precision, | 
 |     const std::string& extra_info, | 
 |     GradientCheckingIterationCallback* callback) { | 
 |   NumericDiffOptions numeric_diff_options; | 
 |   numeric_diff_options.relative_step_size = relative_step_size; | 
 |  | 
 |   return std::make_unique<GradientCheckingCostFunction>(cost_function, | 
 |                                                         manifolds, | 
 |                                                         numeric_diff_options, | 
 |                                                         relative_precision, | 
 |                                                         extra_info, | 
 |                                                         callback); | 
 | } | 
 |  | 
 | std::unique_ptr<ProblemImpl> CreateGradientCheckingProblemImpl( | 
 |     ProblemImpl* problem_impl, | 
 |     double relative_step_size, | 
 |     double relative_precision, | 
 |     GradientCheckingIterationCallback* callback) { | 
 |   CHECK(callback != nullptr); | 
 |   // We create new CostFunctions by wrapping the original CostFunction in a | 
 |   // gradient checking CostFunction. So its okay for the ProblemImpl to take | 
 |   // ownership of it and destroy it. The LossFunctions and Manifolds are reused | 
 |   // and since they are owned by problem_impl, gradient_checking_problem_impl | 
 |   // should not take ownership of it. | 
 |   Problem::Options gradient_checking_problem_options; | 
 |   gradient_checking_problem_options.cost_function_ownership = TAKE_OWNERSHIP; | 
 |   gradient_checking_problem_options.loss_function_ownership = | 
 |       DO_NOT_TAKE_OWNERSHIP; | 
 |   gradient_checking_problem_options.manifold_ownership = DO_NOT_TAKE_OWNERSHIP; | 
 |   gradient_checking_problem_options.context = problem_impl->context(); | 
 |  | 
 |   NumericDiffOptions numeric_diff_options; | 
 |   numeric_diff_options.relative_step_size = relative_step_size; | 
 |  | 
 |   auto gradient_checking_problem_impl = | 
 |       std::make_unique<ProblemImpl>(gradient_checking_problem_options); | 
 |  | 
 |   Program* program = problem_impl->mutable_program(); | 
 |  | 
 |   // For every ParameterBlock in problem_impl, create a new parameter block with | 
 |   // the same manifold and constancy. | 
 |   const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks(); | 
 |   for (auto* parameter_block : parameter_blocks) { | 
 |     gradient_checking_problem_impl->AddParameterBlock( | 
 |         parameter_block->mutable_user_state(), | 
 |         parameter_block->Size(), | 
 |         parameter_block->mutable_manifold()); | 
 |  | 
 |     if (parameter_block->IsConstant()) { | 
 |       gradient_checking_problem_impl->SetParameterBlockConstant( | 
 |           parameter_block->mutable_user_state()); | 
 |     } | 
 |  | 
 |     for (int i = 0; i < parameter_block->Size(); ++i) { | 
 |       gradient_checking_problem_impl->SetParameterUpperBound( | 
 |           parameter_block->mutable_user_state(), | 
 |           i, | 
 |           parameter_block->UpperBound(i)); | 
 |       gradient_checking_problem_impl->SetParameterLowerBound( | 
 |           parameter_block->mutable_user_state(), | 
 |           i, | 
 |           parameter_block->LowerBound(i)); | 
 |     } | 
 |   } | 
 |  | 
 |   // For every ResidualBlock in problem_impl, create a new | 
 |   // ResidualBlock by wrapping its CostFunction inside a | 
 |   // GradientCheckingCostFunction. | 
 |   const vector<ResidualBlock*>& residual_blocks = program->residual_blocks(); | 
 |   for (int i = 0; i < residual_blocks.size(); ++i) { | 
 |     ResidualBlock* residual_block = residual_blocks[i]; | 
 |  | 
 |     // Build a human readable string which identifies the | 
 |     // ResidualBlock. This is used by the GradientCheckingCostFunction | 
 |     // when logging debugging information. | 
 |     string extra_info = | 
 |         StringPrintf("Residual block id %d; depends on parameters [", i); | 
 |     vector<double*> parameter_blocks; | 
 |     vector<const Manifold*> manifolds; | 
 |     parameter_blocks.reserve(residual_block->NumParameterBlocks()); | 
 |     manifolds.reserve(residual_block->NumParameterBlocks()); | 
 |     for (int j = 0; j < residual_block->NumParameterBlocks(); ++j) { | 
 |       ParameterBlock* parameter_block = residual_block->parameter_blocks()[j]; | 
 |       parameter_blocks.push_back(parameter_block->mutable_user_state()); | 
 |       StringAppendF(&extra_info, "%p", parameter_block->mutable_user_state()); | 
 |       extra_info += (j < residual_block->NumParameterBlocks() - 1) ? ", " : "]"; | 
 |       manifolds.push_back( | 
 |           problem_impl->GetManifold(parameter_block->mutable_user_state())); | 
 |     } | 
 |  | 
 |     // Wrap the original CostFunction in a GradientCheckingCostFunction. | 
 |     CostFunction* gradient_checking_cost_function = | 
 |         new GradientCheckingCostFunction(residual_block->cost_function(), | 
 |                                          &manifolds, | 
 |                                          numeric_diff_options, | 
 |                                          relative_precision, | 
 |                                          extra_info, | 
 |                                          callback); | 
 |  | 
 |     // The const_cast is necessary because | 
 |     // ProblemImpl::AddResidualBlock can potentially take ownership of | 
 |     // the LossFunction, but in this case we are guaranteed that this | 
 |     // will not be the case, so this const_cast is harmless. | 
 |     gradient_checking_problem_impl->AddResidualBlock( | 
 |         gradient_checking_cost_function, | 
 |         const_cast<LossFunction*>(residual_block->loss_function()), | 
 |         parameter_blocks.data(), | 
 |         static_cast<int>(parameter_blocks.size())); | 
 |   } | 
 |  | 
 |   // Normally, when a problem is given to the solver, we guarantee | 
 |   // that the state pointers for each parameter block point to the | 
 |   // user provided data. Since we are creating this new problem from a | 
 |   // problem given to us at an arbitrary stage of the solve, we cannot | 
 |   // depend on this being the case, so we explicitly call | 
 |   // SetParameterBlockStatePtrsToUserStatePtrs to ensure that this is | 
 |   // the case. | 
 |   gradient_checking_problem_impl->mutable_program() | 
 |       ->SetParameterBlockStatePtrsToUserStatePtrs(); | 
 |  | 
 |   return gradient_checking_problem_impl; | 
 | } | 
 |  | 
 | }  // namespace ceres::internal |