|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2015 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/cubic_interpolation.h" | 
|  |  | 
|  | #include <memory> | 
|  |  | 
|  | #include "ceres/jet.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | static constexpr double kTolerance = 1e-12; | 
|  |  | 
|  | TEST(Grid1D, OneDataDimension) { | 
|  | int x[] = {1, 2, 3}; | 
|  | Grid1D<int, 1> grid(x, 0, 3); | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | double value; | 
|  | grid.GetValue(i, &value); | 
|  | EXPECT_EQ(value, static_cast<double>(i + 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(Grid1D, OneDataDimensionOutOfBounds) { | 
|  | int x[] = {1, 2, 3}; | 
|  | Grid1D<int, 1> grid(x, 0, 3); | 
|  | double value; | 
|  | grid.GetValue(-1, &value); | 
|  | EXPECT_EQ(value, x[0]); | 
|  | grid.GetValue(-2, &value); | 
|  | EXPECT_EQ(value, x[0]); | 
|  | grid.GetValue(3, &value); | 
|  | EXPECT_EQ(value, x[2]); | 
|  | grid.GetValue(4, &value); | 
|  | EXPECT_EQ(value, x[2]); | 
|  | } | 
|  |  | 
|  | TEST(Grid1D, TwoDataDimensionIntegerDataInterleaved) { | 
|  | // clang-format off | 
|  | int x[] = {1, 5, | 
|  | 2, 6, | 
|  | 3, 7}; | 
|  | // clang-format on | 
|  |  | 
|  | Grid1D<int, 2, true> grid(x, 0, 3); | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | double value[2]; | 
|  | grid.GetValue(i, value); | 
|  | EXPECT_EQ(value[0], static_cast<double>(i + 1)); | 
|  | EXPECT_EQ(value[1], static_cast<double>(i + 5)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(Grid1D, TwoDataDimensionIntegerDataStacked) { | 
|  | // clang-format off | 
|  | int x[] = {1, 2, 3, | 
|  | 5, 6, 7}; | 
|  | // clang-format on | 
|  |  | 
|  | Grid1D<int, 2, false> grid(x, 0, 3); | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | double value[2]; | 
|  | grid.GetValue(i, value); | 
|  | EXPECT_EQ(value[0], static_cast<double>(i + 1)); | 
|  | EXPECT_EQ(value[1], static_cast<double>(i + 5)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(Grid2D, OneDataDimensionRowMajor) { | 
|  | // clang-format off | 
|  | int x[] = {1, 2, 3, | 
|  | 2, 3, 4}; | 
|  | // clang-format on | 
|  | Grid2D<int, 1, true, true> grid(x, 0, 2, 0, 3); | 
|  | for (int r = 0; r < 2; ++r) { | 
|  | for (int c = 0; c < 3; ++c) { | 
|  | double value; | 
|  | grid.GetValue(r, c, &value); | 
|  | EXPECT_EQ(value, static_cast<double>(r + c + 1)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(Grid2D, OneDataDimensionRowMajorOutOfBounds) { | 
|  | // clang-format off | 
|  | int x[] = {1, 2, 3, | 
|  | 2, 3, 4}; | 
|  | // clang-format on | 
|  | Grid2D<int, 1, true, true> grid(x, 0, 2, 0, 3); | 
|  | double value; | 
|  | grid.GetValue(-1, -1, &value); | 
|  | EXPECT_EQ(value, x[0]); | 
|  | grid.GetValue(-1, 0, &value); | 
|  | EXPECT_EQ(value, x[0]); | 
|  | grid.GetValue(-1, 1, &value); | 
|  | EXPECT_EQ(value, x[1]); | 
|  | grid.GetValue(-1, 2, &value); | 
|  | EXPECT_EQ(value, x[2]); | 
|  | grid.GetValue(-1, 3, &value); | 
|  | EXPECT_EQ(value, x[2]); | 
|  | grid.GetValue(0, 3, &value); | 
|  | EXPECT_EQ(value, x[2]); | 
|  | grid.GetValue(1, 3, &value); | 
|  | EXPECT_EQ(value, x[5]); | 
|  | grid.GetValue(2, 3, &value); | 
|  | EXPECT_EQ(value, x[5]); | 
|  | grid.GetValue(2, 2, &value); | 
|  | EXPECT_EQ(value, x[5]); | 
|  | grid.GetValue(2, 1, &value); | 
|  | EXPECT_EQ(value, x[4]); | 
|  | grid.GetValue(2, 0, &value); | 
|  | EXPECT_EQ(value, x[3]); | 
|  | grid.GetValue(2, -1, &value); | 
|  | EXPECT_EQ(value, x[3]); | 
|  | grid.GetValue(1, -1, &value); | 
|  | EXPECT_EQ(value, x[3]); | 
|  | grid.GetValue(0, -1, &value); | 
|  | EXPECT_EQ(value, x[0]); | 
|  | } | 
|  |  | 
|  | TEST(Grid2D, TwoDataDimensionRowMajorInterleaved) { | 
|  | // clang-format off | 
|  | int x[] = {1, 4, 2, 8, 3, 12, | 
|  | 2, 8, 3, 12, 4, 16}; | 
|  | // clang-format on | 
|  | Grid2D<int, 2, true, true> grid(x, 0, 2, 0, 3); | 
|  | for (int r = 0; r < 2; ++r) { | 
|  | for (int c = 0; c < 3; ++c) { | 
|  | double value[2]; | 
|  | grid.GetValue(r, c, value); | 
|  | EXPECT_EQ(value[0], static_cast<double>(r + c + 1)); | 
|  | EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(Grid2D, TwoDataDimensionRowMajorStacked) { | 
|  | // clang-format off | 
|  | int x[] = {1,  2,  3, | 
|  | 2,  3,  4, | 
|  | 4,  8, 12, | 
|  | 8, 12, 16}; | 
|  | // clang-format on | 
|  | Grid2D<int, 2, true, false> grid(x, 0, 2, 0, 3); | 
|  | for (int r = 0; r < 2; ++r) { | 
|  | for (int c = 0; c < 3; ++c) { | 
|  | double value[2]; | 
|  | grid.GetValue(r, c, value); | 
|  | EXPECT_EQ(value[0], static_cast<double>(r + c + 1)); | 
|  | EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(Grid2D, TwoDataDimensionColMajorInterleaved) { | 
|  | // clang-format off | 
|  | int x[] = { 1,  4, 2,  8, | 
|  | 2,  8, 3, 12, | 
|  | 3, 12, 4, 16}; | 
|  | // clang-format on | 
|  | Grid2D<int, 2, false, true> grid(x, 0, 2, 0, 3); | 
|  | for (int r = 0; r < 2; ++r) { | 
|  | for (int c = 0; c < 3; ++c) { | 
|  | double value[2]; | 
|  | grid.GetValue(r, c, value); | 
|  | EXPECT_EQ(value[0], static_cast<double>(r + c + 1)); | 
|  | EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(Grid2D, TwoDataDimensionColMajorStacked) { | 
|  | // clang-format off | 
|  | int x[] = {1,   2, | 
|  | 2,   3, | 
|  | 3,   4, | 
|  | 4,   8, | 
|  | 8,  12, | 
|  | 12, 16}; | 
|  | // clang-format on | 
|  | Grid2D<int, 2, false, false> grid(x, 0, 2, 0, 3); | 
|  | for (int r = 0; r < 2; ++r) { | 
|  | for (int c = 0; c < 3; ++c) { | 
|  | double value[2]; | 
|  | grid.GetValue(r, c, value); | 
|  | EXPECT_EQ(value[0], static_cast<double>(r + c + 1)); | 
|  | EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | class CubicInterpolatorTest : public ::testing::Test { | 
|  | public: | 
|  | template <int kDataDimension> | 
|  | void RunPolynomialInterpolationTest(const double a, | 
|  | const double b, | 
|  | const double c, | 
|  | const double d) { | 
|  | values_ = std::make_unique<double[]>(kDataDimension * kNumSamples); | 
|  |  | 
|  | for (int x = 0; x < kNumSamples; ++x) { | 
|  | for (int dim = 0; dim < kDataDimension; ++dim) { | 
|  | values_[x * kDataDimension + dim] = | 
|  | (dim * dim + 1) * (a * x * x * x + b * x * x + c * x + d); | 
|  | } | 
|  | } | 
|  |  | 
|  | Grid1D<double, kDataDimension> grid(values_.get(), 0, kNumSamples); | 
|  | CubicInterpolator<Grid1D<double, kDataDimension>> interpolator(grid); | 
|  |  | 
|  | // Check values in the all the cells but the first and the last | 
|  | // ones. In these cells, the interpolated function values should | 
|  | // match exactly the values of the function being interpolated. | 
|  | // | 
|  | // On the boundary, we extrapolate the values of the function on | 
|  | // the basis of its first derivative, so we do not expect the | 
|  | // function values and its derivatives not to match. | 
|  | for (int j = 0; j < kNumTestSamples; ++j) { | 
|  | const double x = 1.0 + 7.0 / (kNumTestSamples - 1) * j; | 
|  | double expected_f[kDataDimension], expected_dfdx[kDataDimension]; | 
|  | double f[kDataDimension], dfdx[kDataDimension]; | 
|  |  | 
|  | for (int dim = 0; dim < kDataDimension; ++dim) { | 
|  | expected_f[dim] = | 
|  | (dim * dim + 1) * (a * x * x * x + b * x * x + c * x + d); | 
|  | expected_dfdx[dim] = | 
|  | (dim * dim + 1) * (3.0 * a * x * x + 2.0 * b * x + c); | 
|  | } | 
|  |  | 
|  | interpolator.Evaluate(x, f, dfdx); | 
|  | for (int dim = 0; dim < kDataDimension; ++dim) { | 
|  | EXPECT_NEAR(f[dim], expected_f[dim], kTolerance) | 
|  | << "x: " << x << " dim: " << dim | 
|  | << " actual f(x): " << expected_f[dim] | 
|  | << " estimated f(x): " << f[dim]; | 
|  | EXPECT_NEAR(dfdx[dim], expected_dfdx[dim], kTolerance) | 
|  | << "x: " << x << " dim: " << dim | 
|  | << " actual df(x)/dx: " << expected_dfdx[dim] | 
|  | << " estimated df(x)/dx: " << dfdx[dim]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | static constexpr int kNumSamples = 10; | 
|  | static constexpr int kNumTestSamples = 100; | 
|  | std::unique_ptr<double[]> values_; | 
|  | }; | 
|  |  | 
|  | TEST_F(CubicInterpolatorTest, ConstantFunction) { | 
|  | RunPolynomialInterpolationTest<1>(0.0, 0.0, 0.0, 0.5); | 
|  | RunPolynomialInterpolationTest<2>(0.0, 0.0, 0.0, 0.5); | 
|  | RunPolynomialInterpolationTest<3>(0.0, 0.0, 0.0, 0.5); | 
|  | } | 
|  |  | 
|  | TEST_F(CubicInterpolatorTest, LinearFunction) { | 
|  | RunPolynomialInterpolationTest<1>(0.0, 0.0, 1.0, 0.5); | 
|  | RunPolynomialInterpolationTest<2>(0.0, 0.0, 1.0, 0.5); | 
|  | RunPolynomialInterpolationTest<3>(0.0, 0.0, 1.0, 0.5); | 
|  | } | 
|  |  | 
|  | TEST_F(CubicInterpolatorTest, QuadraticFunction) { | 
|  | RunPolynomialInterpolationTest<1>(0.0, 0.4, 1.0, 0.5); | 
|  | RunPolynomialInterpolationTest<2>(0.0, 0.4, 1.0, 0.5); | 
|  | RunPolynomialInterpolationTest<3>(0.0, 0.4, 1.0, 0.5); | 
|  | } | 
|  |  | 
|  | TEST(CubicInterpolator, JetEvaluation) { | 
|  | const double values[] = {1.0, 2.0, 2.0, 5.0, 3.0, 9.0, 2.0, 7.0}; | 
|  |  | 
|  | Grid1D<double, 2, true> grid(values, 0, 4); | 
|  | CubicInterpolator<Grid1D<double, 2, true>> interpolator(grid); | 
|  |  | 
|  | double f[2], dfdx[2]; | 
|  | const double x = 2.5; | 
|  | interpolator.Evaluate(x, f, dfdx); | 
|  |  | 
|  | // Create a Jet with the same scalar part as x, so that the output | 
|  | // Jet will be evaluated at x. | 
|  | Jet<double, 4> x_jet; | 
|  | x_jet.a = x; | 
|  | x_jet.v(0) = 1.0; | 
|  | x_jet.v(1) = 1.1; | 
|  | x_jet.v(2) = 1.2; | 
|  | x_jet.v(3) = 1.3; | 
|  |  | 
|  | Jet<double, 4> f_jets[2]; | 
|  | interpolator.Evaluate(x_jet, f_jets); | 
|  |  | 
|  | // Check that the scalar part of the Jet is f(x). | 
|  | EXPECT_EQ(f_jets[0].a, f[0]); | 
|  | EXPECT_EQ(f_jets[1].a, f[1]); | 
|  |  | 
|  | // Check that the derivative part of the Jet is dfdx * x_jet.v | 
|  | // by the chain rule. | 
|  | EXPECT_NEAR((f_jets[0].v - dfdx[0] * x_jet.v).norm(), 0.0, kTolerance); | 
|  | EXPECT_NEAR((f_jets[1].v - dfdx[1] * x_jet.v).norm(), 0.0, kTolerance); | 
|  | } | 
|  |  | 
|  | class BiCubicInterpolatorTest : public ::testing::Test { | 
|  | public: | 
|  | // This class needs to have an Eigen aligned operator new as it contains | 
|  | // fixed-size Eigen types. | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | 
|  |  | 
|  | template <int kDataDimension> | 
|  | void RunPolynomialInterpolationTest(const Eigen::Matrix3d& coeff) { | 
|  | values_ = std::make_unique<double[]>(kNumRows * kNumCols * kDataDimension); | 
|  | coeff_ = coeff; | 
|  | double* v = values_.get(); | 
|  | for (int r = 0; r < kNumRows; ++r) { | 
|  | for (int c = 0; c < kNumCols; ++c) { | 
|  | for (int dim = 0; dim < kDataDimension; ++dim) { | 
|  | *v++ = (dim * dim + 1) * EvaluateF(r, c); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Grid2D<double, kDataDimension> grid( | 
|  | values_.get(), 0, kNumRows, 0, kNumCols); | 
|  | BiCubicInterpolator<Grid2D<double, kDataDimension>> interpolator(grid); | 
|  |  | 
|  | for (int j = 0; j < kNumRowSamples; ++j) { | 
|  | const double r = 1.0 + 7.0 / (kNumRowSamples - 1) * j; | 
|  | for (int k = 0; k < kNumColSamples; ++k) { | 
|  | const double c = 1.0 + 7.0 / (kNumColSamples - 1) * k; | 
|  | double f[kDataDimension], dfdr[kDataDimension], dfdc[kDataDimension]; | 
|  | interpolator.Evaluate(r, c, f, dfdr, dfdc); | 
|  | for (int dim = 0; dim < kDataDimension; ++dim) { | 
|  | EXPECT_NEAR(f[dim], (dim * dim + 1) * EvaluateF(r, c), kTolerance); | 
|  | EXPECT_NEAR( | 
|  | dfdr[dim], (dim * dim + 1) * EvaluatedFdr(r, c), kTolerance); | 
|  | EXPECT_NEAR( | 
|  | dfdc[dim], (dim * dim + 1) * EvaluatedFdc(r, c), kTolerance); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | double EvaluateF(double r, double c) { | 
|  | Eigen::Vector3d x; | 
|  | x(0) = r; | 
|  | x(1) = c; | 
|  | x(2) = 1; | 
|  | return x.transpose() * coeff_ * x; | 
|  | } | 
|  |  | 
|  | double EvaluatedFdr(double r, double c) { | 
|  | Eigen::Vector3d x; | 
|  | x(0) = r; | 
|  | x(1) = c; | 
|  | x(2) = 1; | 
|  | return (coeff_.row(0) + coeff_.col(0).transpose()) * x; | 
|  | } | 
|  |  | 
|  | double EvaluatedFdc(double r, double c) { | 
|  | Eigen::Vector3d x; | 
|  | x(0) = r; | 
|  | x(1) = c; | 
|  | x(2) = 1; | 
|  | return (coeff_.row(1) + coeff_.col(1).transpose()) * x; | 
|  | } | 
|  |  | 
|  | Eigen::Matrix3d coeff_; | 
|  | static constexpr int kNumRows = 10; | 
|  | static constexpr int kNumCols = 10; | 
|  | static constexpr int kNumRowSamples = 100; | 
|  | static constexpr int kNumColSamples = 100; | 
|  | std::unique_ptr<double[]> values_; | 
|  | }; | 
|  |  | 
|  | TEST_F(BiCubicInterpolatorTest, ZeroFunction) { | 
|  | Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); | 
|  | RunPolynomialInterpolationTest<1>(coeff); | 
|  | RunPolynomialInterpolationTest<2>(coeff); | 
|  | RunPolynomialInterpolationTest<3>(coeff); | 
|  | } | 
|  |  | 
|  | TEST_F(BiCubicInterpolatorTest, Degree00Function) { | 
|  | Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); | 
|  | coeff(2, 2) = 1.0; | 
|  | RunPolynomialInterpolationTest<1>(coeff); | 
|  | RunPolynomialInterpolationTest<2>(coeff); | 
|  | RunPolynomialInterpolationTest<3>(coeff); | 
|  | } | 
|  |  | 
|  | TEST_F(BiCubicInterpolatorTest, Degree01Function) { | 
|  | Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); | 
|  | coeff(2, 2) = 1.0; | 
|  | coeff(0, 2) = 0.1; | 
|  | coeff(2, 0) = 0.1; | 
|  | RunPolynomialInterpolationTest<1>(coeff); | 
|  | RunPolynomialInterpolationTest<2>(coeff); | 
|  | RunPolynomialInterpolationTest<3>(coeff); | 
|  | } | 
|  |  | 
|  | TEST_F(BiCubicInterpolatorTest, Degree10Function) { | 
|  | Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); | 
|  | coeff(2, 2) = 1.0; | 
|  | coeff(0, 1) = 0.1; | 
|  | coeff(1, 0) = 0.1; | 
|  | RunPolynomialInterpolationTest<1>(coeff); | 
|  | RunPolynomialInterpolationTest<2>(coeff); | 
|  | RunPolynomialInterpolationTest<3>(coeff); | 
|  | } | 
|  |  | 
|  | TEST_F(BiCubicInterpolatorTest, Degree11Function) { | 
|  | Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); | 
|  | coeff(2, 2) = 1.0; | 
|  | coeff(0, 1) = 0.1; | 
|  | coeff(1, 0) = 0.1; | 
|  | coeff(0, 2) = 0.2; | 
|  | coeff(2, 0) = 0.2; | 
|  | RunPolynomialInterpolationTest<1>(coeff); | 
|  | RunPolynomialInterpolationTest<2>(coeff); | 
|  | RunPolynomialInterpolationTest<3>(coeff); | 
|  | } | 
|  |  | 
|  | TEST_F(BiCubicInterpolatorTest, Degree12Function) { | 
|  | Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); | 
|  | coeff(2, 2) = 1.0; | 
|  | coeff(0, 1) = 0.1; | 
|  | coeff(1, 0) = 0.1; | 
|  | coeff(0, 2) = 0.2; | 
|  | coeff(2, 0) = 0.2; | 
|  | coeff(1, 1) = 0.3; | 
|  | RunPolynomialInterpolationTest<1>(coeff); | 
|  | RunPolynomialInterpolationTest<2>(coeff); | 
|  | RunPolynomialInterpolationTest<3>(coeff); | 
|  | } | 
|  |  | 
|  | TEST_F(BiCubicInterpolatorTest, Degree21Function) { | 
|  | Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); | 
|  | coeff(2, 2) = 1.0; | 
|  | coeff(0, 1) = 0.1; | 
|  | coeff(1, 0) = 0.1; | 
|  | coeff(0, 2) = 0.2; | 
|  | coeff(2, 0) = 0.2; | 
|  | coeff(0, 0) = 0.3; | 
|  | RunPolynomialInterpolationTest<1>(coeff); | 
|  | RunPolynomialInterpolationTest<2>(coeff); | 
|  | RunPolynomialInterpolationTest<3>(coeff); | 
|  | } | 
|  |  | 
|  | TEST_F(BiCubicInterpolatorTest, Degree22Function) { | 
|  | Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); | 
|  | coeff(2, 2) = 1.0; | 
|  | coeff(0, 1) = 0.1; | 
|  | coeff(1, 0) = 0.1; | 
|  | coeff(0, 2) = 0.2; | 
|  | coeff(2, 0) = 0.2; | 
|  | coeff(0, 0) = 0.3; | 
|  | coeff(0, 1) = -0.4; | 
|  | coeff(1, 0) = -0.4; | 
|  | RunPolynomialInterpolationTest<1>(coeff); | 
|  | RunPolynomialInterpolationTest<2>(coeff); | 
|  | RunPolynomialInterpolationTest<3>(coeff); | 
|  | } | 
|  |  | 
|  | TEST(BiCubicInterpolator, JetEvaluation) { | 
|  | // clang-format off | 
|  | const double values[] = {1.0, 5.0, 2.0, 10.0, 2.0, 6.0, 3.0, 5.0, | 
|  | 1.0, 2.0, 2.0,  2.0, 2.0, 2.0, 3.0, 1.0}; | 
|  | // clang-format on | 
|  |  | 
|  | Grid2D<double, 2> grid(values, 0, 2, 0, 4); | 
|  | BiCubicInterpolator<Grid2D<double, 2>> interpolator(grid); | 
|  |  | 
|  | double f[2], dfdr[2], dfdc[2]; | 
|  | const double r = 0.5; | 
|  | const double c = 2.5; | 
|  | interpolator.Evaluate(r, c, f, dfdr, dfdc); | 
|  |  | 
|  | // Create a Jet with the same scalar part as x, so that the output | 
|  | // Jet will be evaluated at x. | 
|  | Jet<double, 4> r_jet; | 
|  | r_jet.a = r; | 
|  | r_jet.v(0) = 1.0; | 
|  | r_jet.v(1) = 1.1; | 
|  | r_jet.v(2) = 1.2; | 
|  | r_jet.v(3) = 1.3; | 
|  |  | 
|  | Jet<double, 4> c_jet; | 
|  | c_jet.a = c; | 
|  | c_jet.v(0) = 2.0; | 
|  | c_jet.v(1) = 3.1; | 
|  | c_jet.v(2) = 4.2; | 
|  | c_jet.v(3) = 5.3; | 
|  |  | 
|  | Jet<double, 4> f_jets[2]; | 
|  | interpolator.Evaluate(r_jet, c_jet, f_jets); | 
|  | EXPECT_EQ(f_jets[0].a, f[0]); | 
|  | EXPECT_EQ(f_jets[1].a, f[1]); | 
|  | EXPECT_NEAR((f_jets[0].v - dfdr[0] * r_jet.v - dfdc[0] * c_jet.v).norm(), | 
|  | 0.0, | 
|  | kTolerance); | 
|  | EXPECT_NEAR((f_jets[1].v - dfdr[1] * r_jet.v - dfdc[1] * c_jet.v).norm(), | 
|  | 0.0, | 
|  | kTolerance); | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |