| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2020 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: darius.rueckert@fau.de (Darius Rueckert) | 
 |  | 
 | #include <memory> | 
 | #include <random> | 
 |  | 
 | #include "benchmark/benchmark.h" | 
 | #include "ceres/autodiff_benchmarks/brdf_cost_function.h" | 
 | #include "ceres/autodiff_benchmarks/constant_cost_function.h" | 
 | #include "ceres/autodiff_benchmarks/linear_cost_functions.h" | 
 | #include "ceres/autodiff_benchmarks/photometric_error.h" | 
 | #include "ceres/autodiff_benchmarks/relative_pose_error.h" | 
 | #include "ceres/autodiff_benchmarks/snavely_reprojection_error.h" | 
 | #include "ceres/ceres.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | // If we want to use functors with both operator() and an Evaluate() method | 
 | // with AutoDiff then this wrapper class here has to be used. Autodiff doesn't | 
 | // support functors that have an Evaluate() function. | 
 | // | 
 | // CostFunctionToFunctor hides the Evaluate() function, because it doesn't | 
 | // derive from CostFunction. Autodiff sees it as a simple functor and will use | 
 | // the operator() as expected. | 
 | template <typename CostFunction> | 
 | struct CostFunctionToFunctor { | 
 |     template <typename... _Args> | 
 |     explicit CostFunctionToFunctor(_Args&&... __args) | 
 |         : cost_function(std::forward<_Args>(__args)...) {} | 
 |  | 
 |     template <typename... _Args> | 
 |     inline bool operator()(_Args&&... __args) const { | 
 |         return cost_function(std::forward<_Args>(__args)...); | 
 |     } | 
 |  | 
 |     CostFunction cost_function; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | template <int kParameterBlockSize> | 
 | static void BM_ConstantAnalytic(benchmark::State& state) { | 
 |   constexpr int num_residuals = 1; | 
 |   std::array<double, kParameterBlockSize> parameters_values; | 
 |   std::iota(parameters_values.begin(), parameters_values.end(), 0); | 
 |   double* parameters[] = {parameters_values.data()}; | 
 |  | 
 |   std::array<double, num_residuals> residuals; | 
 |  | 
 |   std::array<double, num_residuals * kParameterBlockSize> jacobian_values; | 
 |   double* jacobians[] = {jacobian_values.data()}; | 
 |  | 
 |   std::unique_ptr<ceres::CostFunction> cost_function( | 
 |       new ConstantCostFunction<kParameterBlockSize>()); | 
 |  | 
 |   for (auto _ : state) { | 
 |     cost_function->Evaluate(parameters, residuals.data(), jacobians); | 
 |   } | 
 | } | 
 |  | 
 | template <int kParameterBlockSize> | 
 | static void BM_ConstantAutodiff(benchmark::State& state) { | 
 |   constexpr int num_residuals = 1; | 
 |   std::array<double, kParameterBlockSize> parameters_values; | 
 |   std::iota(parameters_values.begin(), parameters_values.end(), 0); | 
 |   double* parameters[] = {parameters_values.data()}; | 
 |  | 
 |   std::array<double, num_residuals> residuals; | 
 |  | 
 |   std::array<double, num_residuals * kParameterBlockSize> jacobian_values; | 
 |   double* jacobians[] = {jacobian_values.data()}; | 
 |  | 
 |   using AutoDiffFunctor = ceres::internal::CostFunctionToFunctor< | 
 |       ConstantCostFunction<kParameterBlockSize>>; | 
 |   std::unique_ptr<ceres::CostFunction> cost_function( | 
 |       new ceres::AutoDiffCostFunction<AutoDiffFunctor, 1, kParameterBlockSize>( | 
 |           new AutoDiffFunctor())); | 
 |  | 
 |   for (auto _ : state) { | 
 |     cost_function->Evaluate(parameters, residuals.data(), jacobians); | 
 |   } | 
 | } | 
 |  | 
 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 1); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 1); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 10); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 10); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 20); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 20); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 30); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 30); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 40); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 40); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 50); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 50); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAnalytic, 60); | 
 | BENCHMARK_TEMPLATE(BM_ConstantAutodiff, 60); | 
 |  | 
 | static void BM_Linear1AutoDiff(benchmark::State& state) { | 
 |   using FunctorType = | 
 |       ceres::internal::CostFunctionToFunctor<Linear1CostFunction>; | 
 |  | 
 |   double parameter_block1[] = {1.}; | 
 |   double* parameters[] = {parameter_block1}; | 
 |  | 
 |   double jacobian1[1]; | 
 |   double residuals[1]; | 
 |   double* jacobians[] = {jacobian1}; | 
 |  | 
 |   std::unique_ptr<ceres::CostFunction> cost_function( | 
 |       new ceres::AutoDiffCostFunction<FunctorType, 1, 1>(new FunctorType())); | 
 |  | 
 |   for (auto _ : state) { | 
 |     cost_function->Evaluate( | 
 |         parameters, residuals, state.range(0) ? jacobians : nullptr); | 
 |   } | 
 | } | 
 | BENCHMARK(BM_Linear1AutoDiff)->Arg(0)->Arg(1); | 
 |  | 
 | static void BM_Linear10AutoDiff(benchmark::State& state) { | 
 |   using FunctorType = | 
 |       ceres::internal::CostFunctionToFunctor<Linear10CostFunction>; | 
 |  | 
 |   double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}; | 
 |   double* parameters[] = {parameter_block1}; | 
 |  | 
 |   double jacobian1[10 * 10]; | 
 |   double residuals[10]; | 
 |   double* jacobians[] = {jacobian1}; | 
 |  | 
 |   std::unique_ptr<ceres::CostFunction> cost_function( | 
 |       new ceres::AutoDiffCostFunction<FunctorType, 10, 10>(new FunctorType())); | 
 |  | 
 |   for (auto _ : state) { | 
 |     cost_function->Evaluate( | 
 |         parameters, residuals, state.range(0) ? jacobians : nullptr); | 
 |   } | 
 | } | 
 | BENCHMARK(BM_Linear10AutoDiff)->Arg(0)->Arg(1); | 
 |  | 
 | // From the NIST problem collection. | 
 | struct Rat43CostFunctor { | 
 |   Rat43CostFunctor(const double x, const double y) : x_(x), y_(y) {} | 
 |  | 
 |   template <typename T> | 
 |   inline bool operator()(const T* parameters, T* residuals) const { | 
 |     const T& b1 = parameters[0]; | 
 |     const T& b2 = parameters[1]; | 
 |     const T& b3 = parameters[2]; | 
 |     const T& b4 = parameters[3]; | 
 |     residuals[0] = b1 * pow(1.0 + exp(b2 - b3 * x_), -1.0 / b4) - y_; | 
 |     return true; | 
 |   } | 
 |  | 
 |  private: | 
 |   const double x_; | 
 |   const double y_; | 
 | }; | 
 |  | 
 | static void BM_Rat43AutoDiff(benchmark::State& state) { | 
 |   double parameter_block1[] = {1., 2., 3., 4.}; | 
 |   double* parameters[] = {parameter_block1}; | 
 |  | 
 |   double jacobian1[] = {0.0, 0.0, 0.0, 0.0}; | 
 |   double residuals; | 
 |   double* jacobians[] = {jacobian1}; | 
 |   const double x = 0.2; | 
 |   const double y = 0.3; | 
 |   std::unique_ptr<ceres::CostFunction> cost_function( | 
 |       new ceres::AutoDiffCostFunction<Rat43CostFunctor, 1, 4>( | 
 |           new Rat43CostFunctor(x, y))); | 
 |  | 
 |   for (auto _ : state) { | 
 |     cost_function->Evaluate( | 
 |         parameters, &residuals, state.range(0) ? jacobians : nullptr); | 
 |   } | 
 | } | 
 | BENCHMARK(BM_Rat43AutoDiff)->Arg(0)->Arg(1); | 
 |  | 
 | static void BM_SnavelyReprojectionAutoDiff(benchmark::State& state) { | 
 |   using FunctorType = | 
 |       ceres::internal::CostFunctionToFunctor<SnavelyReprojectionError>; | 
 |  | 
 |   double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7., 8., 9.}; | 
 |   double parameter_block2[] = {1., 2., 3.}; | 
 |   double* parameters[] = {parameter_block1, parameter_block2}; | 
 |  | 
 |   double jacobian1[2 * 9]; | 
 |   double jacobian2[2 * 3]; | 
 |   double residuals[2]; | 
 |   double* jacobians[] = {jacobian1, jacobian2}; | 
 |  | 
 |   const double x = 0.2; | 
 |   const double y = 0.3; | 
 |   std::unique_ptr<ceres::CostFunction> cost_function( | 
 |       new ceres::AutoDiffCostFunction<FunctorType, 2, 9, 3>( | 
 |           new FunctorType(x, y))); | 
 |  | 
 |   for (auto _ : state) { | 
 |     cost_function->Evaluate( | 
 |         parameters, residuals, state.range(0) ? jacobians : nullptr); | 
 |   } | 
 | } | 
 |  | 
 | BENCHMARK(BM_SnavelyReprojectionAutoDiff)->Arg(0)->Arg(1); | 
 |  | 
 | static void BM_PhotometricAutoDiff(benchmark::State& state) { | 
 |   constexpr int PATCH_SIZE = 8; | 
 |  | 
 |   using FunctorType = PhotometricError<PATCH_SIZE>; | 
 |   using ImageType = Eigen::Matrix<uint8_t, 128, 128, Eigen::RowMajor>; | 
 |  | 
 |   // Prepare parameter / residual / jacobian blocks. | 
 |   double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7.}; | 
 |   double parameter_block2[] = {1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1}; | 
 |   double parameter_block3[] = {1.}; | 
 |   double* parameters[] = {parameter_block1, parameter_block2, parameter_block3}; | 
 |  | 
 |   Eigen::Map<Eigen::Quaterniond>(parameter_block1).normalize(); | 
 |   Eigen::Map<Eigen::Quaterniond>(parameter_block2).normalize(); | 
 |  | 
 |   double jacobian1[FunctorType::PATCH_SIZE * FunctorType::POSE_SIZE]; | 
 |   double jacobian2[FunctorType::PATCH_SIZE * FunctorType::POSE_SIZE]; | 
 |   double jacobian3[FunctorType::PATCH_SIZE * FunctorType::POINT_SIZE]; | 
 |   double residuals[FunctorType::PATCH_SIZE]; | 
 |   double* jacobians[] = {jacobian1, jacobian2, jacobian3}; | 
 |  | 
 |   // Prepare data (fixed seed for repeatability). | 
 |   std::mt19937::result_type seed = 42; | 
 |   std::mt19937 gen(seed); | 
 |   std::uniform_real_distribution<double> uniform01(0.0, 1.0); | 
 |   std::uniform_int_distribution<unsigned int> uniform0255(0, 255); | 
 |  | 
 |   FunctorType::Patch<double> intensities_host = | 
 |       FunctorType::Patch<double>::NullaryExpr( | 
 |           [&]() { return uniform0255(gen); }); | 
 |  | 
 |   // Set bearing vector's z component to 1, i.e. pointing away from the camera, | 
 |   // to ensure they are (likely) in the domain of the projection function (given | 
 |   // a small rotation between host and target frame). | 
 |   FunctorType::PatchVectors<double> bearings_host = | 
 |       FunctorType::PatchVectors<double>::NullaryExpr( | 
 |           [&]() { return uniform01(gen); }); | 
 |   bearings_host.row(2).array() = 1; | 
 |   bearings_host.colwise().normalize(); | 
 |  | 
 |   ImageType image = ImageType::NullaryExpr( | 
 |       [&]() { return static_cast<uint8_t>(uniform0255(gen)); }); | 
 |   FunctorType::Grid grid(image.data(), 0, image.rows(), 0, image.cols()); | 
 |   FunctorType::Interpolator image_target(grid); | 
 |  | 
 |   FunctorType::Intrinsics intrinsics; | 
 |   intrinsics << 128, 128, 1, -1, 0.5, 0.5; | 
 |  | 
 |   std::unique_ptr<ceres::CostFunction> cost_function( | 
 |       new ceres::AutoDiffCostFunction<FunctorType, | 
 |                                       FunctorType::PATCH_SIZE, | 
 |                                       FunctorType::POSE_SIZE, | 
 |                                       FunctorType::POSE_SIZE, | 
 |                                       FunctorType::POINT_SIZE>(new FunctorType( | 
 |           intensities_host, bearings_host, image_target, intrinsics))); | 
 |  | 
 |   for (auto _ : state) { | 
 |     cost_function->Evaluate( | 
 |         parameters, residuals, state.range(0) ? jacobians : nullptr); | 
 |   } | 
 | } | 
 |  | 
 | BENCHMARK(BM_PhotometricAutoDiff)->Arg(0)->Arg(1); | 
 |  | 
 | static void BM_RelativePoseAutoDiff(benchmark::State& state) { | 
 |   using FunctorType = RelativePoseError; | 
 |  | 
 |   double parameter_block1[] = {1., 2., 3., 4., 5., 6., 7.}; | 
 |   double parameter_block2[] = {1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1}; | 
 |   double* parameters[] = {parameter_block1, parameter_block2}; | 
 |  | 
 |   Eigen::Map<Eigen::Quaterniond>(parameter_block1).normalize(); | 
 |   Eigen::Map<Eigen::Quaterniond>(parameter_block2).normalize(); | 
 |  | 
 |   double jacobian1[6 * 7]; | 
 |   double jacobian2[6 * 7]; | 
 |   double residuals[6]; | 
 |   double* jacobians[] = {jacobian1, jacobian2}; | 
 |  | 
 |   Eigen::Quaterniond q_i_j = Eigen::Quaterniond(1, 2, 3, 4).normalized(); | 
 |   Eigen::Vector3d t_i_j(1, 2, 3); | 
 |  | 
 |   std::unique_ptr<ceres::CostFunction> cost_function( | 
 |       new ceres::AutoDiffCostFunction<FunctorType, 6, 7, 7>( | 
 |           new FunctorType(q_i_j, t_i_j))); | 
 |  | 
 |   for (auto _ : state) { | 
 |     cost_function->Evaluate( | 
 |         parameters, residuals, state.range(0) ? jacobians : nullptr); | 
 |   } | 
 | } | 
 |  | 
 | BENCHMARK(BM_RelativePoseAutoDiff)->Arg(0)->Arg(1); | 
 |  | 
 | static void BM_BrdfAutoDiff(benchmark::State& state) { | 
 |   using FunctorType = ceres::internal::CostFunctionToFunctor<Brdf>; | 
 |  | 
 |   double material[] = {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.}; | 
 |   auto c = Eigen::Vector3d(0.1, 0.2, 0.3); | 
 |   auto n = Eigen::Vector3d(-0.1, 0.5, 0.2).normalized(); | 
 |   auto v = Eigen::Vector3d(0.5, -0.2, 0.9).normalized(); | 
 |   auto l = Eigen::Vector3d(-0.3, 0.4, -0.3).normalized(); | 
 |   auto x = Eigen::Vector3d(0.5, 0.7, -0.1).normalized(); | 
 |   auto y = Eigen::Vector3d(0.2, -0.2, -0.2).normalized(); | 
 |  | 
 |   double* parameters[7] = { | 
 |       material, c.data(), n.data(), v.data(), l.data(), x.data(), y.data()}; | 
 |  | 
 |   double jacobian[(10 + 6 * 3) * 3]; | 
 |   double residuals[3]; | 
 |   double* jacobians[7] = { | 
 |       jacobian + 0, | 
 |       jacobian + 10 * 3, | 
 |       jacobian + 13 * 3, | 
 |       jacobian + 16 * 3, | 
 |       jacobian + 19 * 3, | 
 |       jacobian + 22 * 3, | 
 |       jacobian + 25 * 3, | 
 |   }; | 
 |  | 
 |   std::unique_ptr<ceres::CostFunction> cost_function( | 
 |       new ceres::AutoDiffCostFunction<FunctorType, 3, 10, 3, 3, 3, 3, 3, 3>( | 
 |           new FunctorType)); | 
 |  | 
 |   for (auto _ : state) { | 
 |     cost_function->Evaluate( | 
 |         parameters, residuals, state.range(0) ? jacobians : nullptr); | 
 |   } | 
 | } | 
 |  | 
 | BENCHMARK(BM_BrdfAutoDiff)->Arg(0)->Arg(1); | 
 |  | 
 | }  // namespace ceres | 
 |  | 
 | BENCHMARK_MAIN(); |