| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2012 Google Inc. All rights reserved. | 
 | // http://code.google.com/p/ceres-solver/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #ifndef CERES_INTERNAL_DOGLEG_STRATEGY_H_ | 
 | #define CERES_INTERNAL_DOGLEG_STRATEGY_H_ | 
 |  | 
 | #include "ceres/linear_solver.h" | 
 | #include "ceres/trust_region_strategy.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | // Dogleg step computation and trust region sizing strategy based on | 
 | // on "Methods for Nonlinear Least Squares" by K. Madsen, H.B. Nielsen | 
 | // and O. Tingleff. Available to download from | 
 | // | 
 | // http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf | 
 | // | 
 | // One minor modification is that instead of computing the pure | 
 | // Gauss-Newton step, we compute a regularized version of it. This is | 
 | // because the Jacobian is often rank-deficient and in such cases | 
 | // using a direct solver leads to numerical failure. | 
 | class DoglegStrategy : public TrustRegionStrategy { | 
 | public: | 
 |   DoglegStrategy(const TrustRegionStrategy::Options& options); | 
 |   virtual ~DoglegStrategy() {} | 
 |  | 
 |   // TrustRegionStrategy interface | 
 |   virtual LinearSolver::Summary ComputeStep( | 
 |       const TrustRegionStrategy::PerSolveOptions& per_solve_options, | 
 |       SparseMatrix* jacobian, | 
 |       const double* residuals, | 
 |       double* step); | 
 |   virtual void StepAccepted(double step_quality); | 
 |   virtual void StepRejected(double step_quality); | 
 |   virtual void StepIsInvalid(); | 
 |  | 
 |   virtual double Radius() const; | 
 |  | 
 |  private: | 
 |   void ComputeCauchyStep(); | 
 |   LinearSolver::Summary ComputeGaussNewtonStep(SparseMatrix* jacobian, | 
 |                                                const double* residuals); | 
 |   void ComputeDoglegStep(double* step); | 
 |  | 
 |   LinearSolver* linear_solver_; | 
 |   double radius_; | 
 |   const double max_radius_; | 
 |  | 
 |   const double min_diagonal_; | 
 |   const double max_diagonal_; | 
 |  | 
 |   // mu is used to scale the diagonal matrix used to make the | 
 |   // Gauss-Newton solve full rank. In each solve, the strategy starts | 
 |   // out with mu = min_mu, and tries values upto max_mu. If the user | 
 |   // reports an invalid step, the value of mu_ is increased so that | 
 |   // the next solve starts with a stronger regularization. | 
 |   // | 
 |   // If a successful step is reported, then the value of mu_ is | 
 |   // decreased with a lower bound of min_mu_. | 
 |   double mu_; | 
 |   const double min_mu_; | 
 |   const double max_mu_; | 
 |   const double mu_increase_factor_; | 
 |   const double increase_threshold_; | 
 |   const double decrease_threshold_; | 
 |  | 
 |   Vector diagonal_; | 
 |   Vector lm_diagonal_; | 
 |  | 
 |   Vector gradient_; | 
 |   Vector gauss_newton_step_; | 
 |  | 
 |   // cauchy_step = alpha * gradient | 
 |   double alpha_; | 
 |   double dogleg_step_norm_; | 
 |  | 
 |   // When, ComputeStep is called, reuse_ indicates whether the | 
 |   // Gauss-Newton and Cauchy steps from the last call to ComputeStep | 
 |   // can be reused or not. | 
 |   // | 
 |   // If the user called StepAccepted, then it is expected that the | 
 |   // user has recomputed the Jacobian matrix and new Gauss-Newton | 
 |   // solve is needed and reuse is set to false. | 
 |   // | 
 |   // If the user called StepRejected, then it is expected that the | 
 |   // user wants to solve the trust region problem with the same matrix | 
 |   // but a different trust region radius and the Gauss-Newton and | 
 |   // Cauchy steps can be reused to compute the Dogleg, thus reuse is | 
 |   // set to true. | 
 |   // | 
 |   // If the user called StepIsInvalid, then there was a numerical | 
 |   // problem with the step computed in the last call to ComputeStep, | 
 |   // and the regularization used to do the Gauss-Newton solve is | 
 |   // increased and a new solve should be done when ComputeStep is | 
 |   // called again, thus reuse is set to false. | 
 |   bool reuse_; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_INTERNAL_DOGLEG_STRATEGY_H_ |