| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #if !defined(CERES_NO_SUITESPARSE) || !defined(CERES_NO_CXSPARSE) |
| |
| #include "ceres/sparse_normal_cholesky_solver.h" |
| |
| #include <algorithm> |
| #include <cstring> |
| #include <ctime> |
| |
| #include "ceres/compressed_row_sparse_matrix.h" |
| #include "ceres/cxsparse.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/scoped_ptr.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/suitesparse.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "ceres/types.h" |
| #include "ceres/wall_time.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| SparseNormalCholeskySolver::SparseNormalCholeskySolver( |
| const LinearSolver::Options& options) |
| : factor_(NULL), |
| cxsparse_factor_(NULL), |
| options_(options) { |
| } |
| |
| void SparseNormalCholeskySolver::FreeFactorization() { |
| #ifndef CERES_NO_SUITESPARSE |
| if (factor_ != NULL) { |
| ss_.Free(factor_); |
| factor_ = NULL; |
| } |
| #endif // CERES_NO_SUITESPARSE |
| |
| #ifndef CERES_NO_CXSPARSE |
| if (cxsparse_factor_ != NULL) { |
| cxsparse_.Free(cxsparse_factor_); |
| cxsparse_factor_ = NULL; |
| } |
| #endif // CERES_NO_CXSPARSE |
| } |
| |
| SparseNormalCholeskySolver::~SparseNormalCholeskySolver() { |
| FreeFactorization(); |
| } |
| |
| LinearSolver::Summary SparseNormalCholeskySolver::SolveImpl( |
| CompressedRowSparseMatrix* A, |
| const double* b, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double * x) { |
| |
| const int num_cols = A->num_cols(); |
| VectorRef(x, num_cols).setZero(); |
| A->LeftMultiply(b, x); |
| |
| if (per_solve_options.D != NULL) { |
| // Temporarily append a diagonal block to the A matrix, but undo |
| // it before returning the matrix to the user. |
| scoped_ptr<CompressedRowSparseMatrix> regularizer; |
| if (A->col_blocks().size() > 0) { |
| regularizer.reset(CompressedRowSparseMatrix::CreateBlockDiagonalMatrix( |
| per_solve_options.D, A->col_blocks())); |
| } else { |
| regularizer.reset(new CompressedRowSparseMatrix( |
| per_solve_options.D, num_cols)); |
| } |
| A->AppendRows(*regularizer); |
| } |
| |
| LinearSolver::Summary summary; |
| switch (options_.sparse_linear_algebra_library_type) { |
| case SUITE_SPARSE: |
| summary = SolveImplUsingSuiteSparse(A, per_solve_options, x); |
| break; |
| case CX_SPARSE: |
| summary = SolveImplUsingCXSparse(A, per_solve_options, x); |
| break; |
| default: |
| LOG(FATAL) << "Unknown sparse linear algebra library : " |
| << options_.sparse_linear_algebra_library_type; |
| } |
| |
| if (per_solve_options.D != NULL) { |
| A->DeleteRows(num_cols); |
| } |
| |
| return summary; |
| } |
| |
| #ifndef CERES_NO_CXSPARSE |
| LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse( |
| CompressedRowSparseMatrix* A, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double * rhs_and_solution) { |
| EventLogger event_logger("SparseNormalCholeskySolver::CXSparse::Solve"); |
| |
| LinearSolver::Summary summary; |
| summary.num_iterations = 1; |
| summary.termination_type = LINEAR_SOLVER_SUCCESS; |
| summary.message = "Success."; |
| |
| // Compute the normal equations. J'J delta = J'f and solve them |
| // using a sparse Cholesky factorization. Notice that when compared |
| // to SuiteSparse we have to explicitly compute the transpose of Jt, |
| // and then the normal equations before they can be |
| // factorized. CHOLMOD/SuiteSparse on the other hand can just work |
| // off of Jt to compute the Cholesky factorization of the normal |
| // equations. |
| if (outer_product_.get() == NULL) { |
| outer_product_.reset( |
| CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram( |
| *A, &pattern_)); |
| } |
| |
| CompressedRowSparseMatrix::ComputeOuterProduct( |
| *A, pattern_, outer_product_.get()); |
| cs_di AtA_view = |
| cxsparse_.CreateSparseMatrixTransposeView(outer_product_.get()); |
| cs_di* AtA = &AtA_view; |
| |
| event_logger.AddEvent("Setup"); |
| |
| // Compute symbolic factorization if not available. |
| if (options_.dynamic_sparsity) { |
| FreeFactorization(); |
| } |
| if (cxsparse_factor_ == NULL) { |
| if (options_.use_postordering) { |
| cxsparse_factor_ = cxsparse_.BlockAnalyzeCholesky(AtA, |
| A->col_blocks(), |
| A->col_blocks()); |
| } else { |
| if (options_.dynamic_sparsity) { |
| cxsparse_factor_ = cxsparse_.AnalyzeCholesky(AtA); |
| } else { |
| cxsparse_factor_ = cxsparse_.AnalyzeCholeskyWithNaturalOrdering(AtA); |
| } |
| } |
| } |
| event_logger.AddEvent("Analysis"); |
| |
| if (cxsparse_factor_ == NULL) { |
| summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; |
| summary.message = |
| "CXSparse failure. Unable to find symbolic factorization."; |
| } else if (!cxsparse_.SolveCholesky(AtA, cxsparse_factor_, rhs_and_solution)) { |
| summary.termination_type = LINEAR_SOLVER_FAILURE; |
| } |
| event_logger.AddEvent("Solve"); |
| |
| return summary; |
| } |
| #else |
| LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse( |
| CompressedRowSparseMatrix* A, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double * rhs_and_solution) { |
| LOG(FATAL) << "No CXSparse support in Ceres."; |
| |
| // Unreachable but MSVC does not know this. |
| return LinearSolver::Summary(); |
| } |
| #endif |
| |
| #ifndef CERES_NO_SUITESPARSE |
| LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse( |
| CompressedRowSparseMatrix* A, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double * rhs_and_solution) { |
| EventLogger event_logger("SparseNormalCholeskySolver::SuiteSparse::Solve"); |
| LinearSolver::Summary summary; |
| summary.termination_type = LINEAR_SOLVER_SUCCESS; |
| summary.num_iterations = 1; |
| summary.message = "Success."; |
| |
| const int num_cols = A->num_cols(); |
| cholmod_sparse lhs = ss_.CreateSparseMatrixTransposeView(A); |
| event_logger.AddEvent("Setup"); |
| |
| if (options_.dynamic_sparsity) { |
| FreeFactorization(); |
| } |
| if (factor_ == NULL) { |
| if (options_.use_postordering) { |
| factor_ = ss_.BlockAnalyzeCholesky(&lhs, |
| A->col_blocks(), |
| A->row_blocks(), |
| &summary.message); |
| } else { |
| if (options_.dynamic_sparsity) { |
| factor_ = ss_.AnalyzeCholesky(&lhs, &summary.message); |
| } else { |
| factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(&lhs, &summary.message); |
| } |
| } |
| } |
| event_logger.AddEvent("Analysis"); |
| |
| if (factor_ == NULL) { |
| summary.termination_type = LINEAR_SOLVER_FATAL_ERROR; |
| return summary; |
| } |
| |
| summary.termination_type = ss_.Cholesky(&lhs, factor_, &summary.message); |
| if (summary.termination_type != LINEAR_SOLVER_SUCCESS) { |
| return summary; |
| } |
| |
| cholmod_dense* rhs = ss_.CreateDenseVector(rhs_and_solution, num_cols, num_cols); |
| cholmod_dense* solution = ss_.Solve(factor_, rhs, &summary.message); |
| event_logger.AddEvent("Solve"); |
| |
| ss_.Free(rhs); |
| if (solution != NULL) { |
| memcpy(rhs_and_solution, solution->x, num_cols * sizeof(*rhs_and_solution)); |
| ss_.Free(solution); |
| } else { |
| summary.termination_type = LINEAR_SOLVER_FAILURE; |
| } |
| |
| event_logger.AddEvent("Teardown"); |
| return summary; |
| } |
| #else |
| LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse( |
| CompressedRowSparseMatrix* A, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double * rhs_and_solution) { |
| LOG(FATAL) << "No SuiteSparse support in Ceres."; |
| |
| // Unreachable but MSVC does not know this. |
| return LinearSolver::Summary(); |
| } |
| #endif |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // !defined(CERES_NO_SUITESPARSE) || !defined(CERES_NO_CXSPARSE) |