| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| |
| #include "ceres/block_jacobi_preconditioner.h" |
| |
| #include <memory> |
| #include <mutex> |
| #include <utility> |
| #include <vector> |
| |
| #include "Eigen/Dense" |
| #include "absl/log/check.h" |
| #include "ceres/block_random_access_diagonal_matrix.h" |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/block_structure.h" |
| #include "ceres/casts.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/parallel_for.h" |
| #include "ceres/small_blas.h" |
| |
| namespace ceres::internal { |
| |
| BlockSparseJacobiPreconditioner::BlockSparseJacobiPreconditioner( |
| Preconditioner::Options options, const BlockSparseMatrix& A) |
| : options_(std::move(options)) { |
| m_ = std::make_unique<BlockRandomAccessDiagonalMatrix>( |
| A.block_structure()->cols, options_.context, options_.num_threads); |
| } |
| |
| BlockSparseJacobiPreconditioner::~BlockSparseJacobiPreconditioner() = default; |
| |
| bool BlockSparseJacobiPreconditioner::UpdateImpl(const BlockSparseMatrix& A, |
| const double* D) { |
| const CompressedRowBlockStructure* bs = A.block_structure(); |
| const double* values = A.values(); |
| m_->SetZero(); |
| |
| ParallelFor(options_.context, |
| 0, |
| bs->rows.size(), |
| options_.num_threads, |
| [this, bs, values](int i) { |
| const int row_block_size = bs->rows[i].block.size; |
| const std::vector<Cell>& cells = bs->rows[i].cells; |
| for (const auto& cell : cells) { |
| const int block_id = cell.block_id; |
| const int col_block_size = bs->cols[block_id].size; |
| int r, c, row_stride, col_stride; |
| CellInfo* cell_info = m_->GetCell( |
| block_id, block_id, &r, &c, &row_stride, &col_stride); |
| MatrixRef m(cell_info->values, row_stride, col_stride); |
| ConstMatrixRef b( |
| values + cell.position, row_block_size, col_block_size); |
| auto lock = |
| MakeConditionalLock(options_.num_threads, cell_info->m); |
| // clang-format off |
| MatrixTransposeMatrixMultiply<Eigen::Dynamic, Eigen::Dynamic, |
| Eigen::Dynamic,Eigen::Dynamic, 1>( |
| values + cell.position, row_block_size,col_block_size, |
| values + cell.position, row_block_size,col_block_size, |
| cell_info->values,r, c,row_stride,col_stride); |
| // clang-format on |
| } |
| }); |
| |
| if (D != nullptr) { |
| // Add the diagonal. |
| ParallelFor(options_.context, |
| 0, |
| bs->cols.size(), |
| options_.num_threads, |
| [this, bs, D](int i) { |
| const int block_size = bs->cols[i].size; |
| int r, c, row_stride, col_stride; |
| CellInfo* cell_info = |
| m_->GetCell(i, i, &r, &c, &row_stride, &col_stride); |
| MatrixRef m(cell_info->values, row_stride, col_stride); |
| m.block(r, c, block_size, block_size).diagonal() += |
| ConstVectorRef(D + bs->cols[i].position, block_size) |
| .array() |
| .square() |
| .matrix(); |
| }); |
| } |
| |
| m_->Invert(); |
| return true; |
| } |
| |
| BlockCRSJacobiPreconditioner::BlockCRSJacobiPreconditioner( |
| Preconditioner::Options options, const CompressedRowSparseMatrix& A) |
| : options_(std::move(options)), locks_(A.col_blocks().size()) { |
| auto& col_blocks = A.col_blocks(); |
| |
| // Compute the number of non-zeros in the preconditioner. This is needed so |
| // that we can construct the CompressedRowSparseMatrix. |
| const int m_nnz = SumSquaredSizes(col_blocks); |
| m_ = std::make_unique<CompressedRowSparseMatrix>( |
| A.num_cols(), A.num_cols(), m_nnz); |
| |
| const int num_col_blocks = col_blocks.size(); |
| |
| // Populate the sparsity structure of the preconditioner matrix. |
| int* m_cols = m_->mutable_cols(); |
| int* m_rows = m_->mutable_rows(); |
| m_rows[0] = 0; |
| for (int i = 0, idx = 0; i < num_col_blocks; ++i) { |
| // For each column block populate a diagonal block in the preconditioner. |
| // Not that the because of the way the CompressedRowSparseMatrix format |
| // works, the entire diagonal block is laid out contiguously in memory as a |
| // row-major matrix. We will use this when updating the block. |
| auto& block = col_blocks[i]; |
| for (int j = 0; j < block.size; ++j) { |
| for (int k = 0; k < block.size; ++k, ++idx) { |
| m_cols[idx] = block.position + k; |
| } |
| m_rows[block.position + j + 1] = idx; |
| } |
| } |
| |
| // In reality we only need num_col_blocks locks, however that would require |
| // that in UpdateImpl we are able to look up the column block from the it |
| // first column. To save ourselves this map we will instead spend a few extra |
| // lock objects. |
| std::vector<std::mutex> locks(A.num_cols()); |
| locks_.swap(locks); |
| CHECK_EQ(m_rows[A.num_cols()], m_nnz); |
| } |
| |
| BlockCRSJacobiPreconditioner::~BlockCRSJacobiPreconditioner() = default; |
| |
| bool BlockCRSJacobiPreconditioner::UpdateImpl( |
| const CompressedRowSparseMatrix& A, const double* D) { |
| const auto& col_blocks = A.col_blocks(); |
| const auto& row_blocks = A.row_blocks(); |
| const int num_col_blocks = col_blocks.size(); |
| const int num_row_blocks = row_blocks.size(); |
| |
| const int* a_rows = A.rows(); |
| const int* a_cols = A.cols(); |
| const double* a_values = A.values(); |
| double* m_values = m_->mutable_values(); |
| const int* m_rows = m_->rows(); |
| |
| m_->SetZero(); |
| |
| ParallelFor( |
| options_.context, |
| 0, |
| num_row_blocks, |
| options_.num_threads, |
| [this, row_blocks, a_rows, a_cols, a_values, m_values, m_rows](int i) { |
| const int row = row_blocks[i].position; |
| const int row_block_size = row_blocks[i].size; |
| const int row_nnz = a_rows[row + 1] - a_rows[row]; |
| ConstMatrixRef row_block( |
| a_values + a_rows[row], row_block_size, row_nnz); |
| int c = 0; |
| while (c < row_nnz) { |
| const int idx = a_rows[row] + c; |
| const int col = a_cols[idx]; |
| const int col_block_size = m_rows[col + 1] - m_rows[col]; |
| |
| // We make use of the fact that the entire diagonal block is |
| // stored contiguously in memory as a row-major matrix. |
| MatrixRef m(m_values + m_rows[col], col_block_size, col_block_size); |
| // We do not have a row_stride version of |
| // MatrixTransposeMatrixMultiply, otherwise we could use it |
| // here to further speed up the following expression. |
| auto b = row_block.middleCols(c, col_block_size); |
| auto lock = MakeConditionalLock(options_.num_threads, locks_[col]); |
| m.noalias() += b.transpose() * b; |
| c += col_block_size; |
| } |
| }); |
| |
| ParallelFor( |
| options_.context, |
| 0, |
| num_col_blocks, |
| options_.num_threads, |
| [col_blocks, m_rows, m_values, D](int i) { |
| const int col = col_blocks[i].position; |
| const int col_block_size = col_blocks[i].size; |
| MatrixRef m(m_values + m_rows[col], col_block_size, col_block_size); |
| |
| if (D != nullptr) { |
| m.diagonal() += |
| ConstVectorRef(D + col, col_block_size).array().square().matrix(); |
| } |
| |
| // TODO(sameeragarwal): Deal with Cholesky inversion failure here and |
| // elsewhere. |
| m = m.llt().solve(Matrix::Identity(col_block_size, col_block_size)); |
| }); |
| |
| return true; |
| } |
| |
| } // namespace ceres::internal |