| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/cubic_interpolation.h" |
| |
| #include <memory> |
| |
| #include "ceres/jet.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres::internal { |
| |
| static constexpr double kTolerance = 1e-12; |
| |
| TEST(Grid1D, OneDataDimension) { |
| int x[] = {1, 2, 3}; |
| Grid1D<int, 1> grid(x, 0, 3); |
| for (int i = 0; i < 3; ++i) { |
| double value; |
| grid.GetValue(i, &value); |
| EXPECT_EQ(value, static_cast<double>(i + 1)); |
| } |
| } |
| |
| TEST(Grid1D, OneDataDimensionOutOfBounds) { |
| int x[] = {1, 2, 3}; |
| Grid1D<int, 1> grid(x, 0, 3); |
| double value; |
| grid.GetValue(-1, &value); |
| EXPECT_EQ(value, x[0]); |
| grid.GetValue(-2, &value); |
| EXPECT_EQ(value, x[0]); |
| grid.GetValue(3, &value); |
| EXPECT_EQ(value, x[2]); |
| grid.GetValue(4, &value); |
| EXPECT_EQ(value, x[2]); |
| } |
| |
| TEST(Grid1D, TwoDataDimensionIntegerDataInterleaved) { |
| // clang-format off |
| int x[] = {1, 5, |
| 2, 6, |
| 3, 7}; |
| // clang-format on |
| |
| Grid1D<int, 2, true> grid(x, 0, 3); |
| for (int i = 0; i < 3; ++i) { |
| double value[2]; |
| grid.GetValue(i, value); |
| EXPECT_EQ(value[0], static_cast<double>(i + 1)); |
| EXPECT_EQ(value[1], static_cast<double>(i + 5)); |
| } |
| } |
| |
| TEST(Grid1D, TwoDataDimensionIntegerDataStacked) { |
| // clang-format off |
| int x[] = {1, 2, 3, |
| 5, 6, 7}; |
| // clang-format on |
| |
| Grid1D<int, 2, false> grid(x, 0, 3); |
| for (int i = 0; i < 3; ++i) { |
| double value[2]; |
| grid.GetValue(i, value); |
| EXPECT_EQ(value[0], static_cast<double>(i + 1)); |
| EXPECT_EQ(value[1], static_cast<double>(i + 5)); |
| } |
| } |
| |
| TEST(Grid2D, OneDataDimensionRowMajor) { |
| // clang-format off |
| int x[] = {1, 2, 3, |
| 2, 3, 4}; |
| // clang-format on |
| Grid2D<int, 1, true, true> grid(x, 0, 2, 0, 3); |
| for (int r = 0; r < 2; ++r) { |
| for (int c = 0; c < 3; ++c) { |
| double value; |
| grid.GetValue(r, c, &value); |
| EXPECT_EQ(value, static_cast<double>(r + c + 1)); |
| } |
| } |
| } |
| |
| TEST(Grid2D, OneDataDimensionRowMajorOutOfBounds) { |
| // clang-format off |
| int x[] = {1, 2, 3, |
| 2, 3, 4}; |
| // clang-format on |
| Grid2D<int, 1, true, true> grid(x, 0, 2, 0, 3); |
| double value; |
| grid.GetValue(-1, -1, &value); |
| EXPECT_EQ(value, x[0]); |
| grid.GetValue(-1, 0, &value); |
| EXPECT_EQ(value, x[0]); |
| grid.GetValue(-1, 1, &value); |
| EXPECT_EQ(value, x[1]); |
| grid.GetValue(-1, 2, &value); |
| EXPECT_EQ(value, x[2]); |
| grid.GetValue(-1, 3, &value); |
| EXPECT_EQ(value, x[2]); |
| grid.GetValue(0, 3, &value); |
| EXPECT_EQ(value, x[2]); |
| grid.GetValue(1, 3, &value); |
| EXPECT_EQ(value, x[5]); |
| grid.GetValue(2, 3, &value); |
| EXPECT_EQ(value, x[5]); |
| grid.GetValue(2, 2, &value); |
| EXPECT_EQ(value, x[5]); |
| grid.GetValue(2, 1, &value); |
| EXPECT_EQ(value, x[4]); |
| grid.GetValue(2, 0, &value); |
| EXPECT_EQ(value, x[3]); |
| grid.GetValue(2, -1, &value); |
| EXPECT_EQ(value, x[3]); |
| grid.GetValue(1, -1, &value); |
| EXPECT_EQ(value, x[3]); |
| grid.GetValue(0, -1, &value); |
| EXPECT_EQ(value, x[0]); |
| } |
| |
| TEST(Grid2D, TwoDataDimensionRowMajorInterleaved) { |
| // clang-format off |
| int x[] = {1, 4, 2, 8, 3, 12, |
| 2, 8, 3, 12, 4, 16}; |
| // clang-format on |
| Grid2D<int, 2, true, true> grid(x, 0, 2, 0, 3); |
| for (int r = 0; r < 2; ++r) { |
| for (int c = 0; c < 3; ++c) { |
| double value[2]; |
| grid.GetValue(r, c, value); |
| EXPECT_EQ(value[0], static_cast<double>(r + c + 1)); |
| EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1))); |
| } |
| } |
| } |
| |
| TEST(Grid2D, TwoDataDimensionRowMajorStacked) { |
| // clang-format off |
| int x[] = {1, 2, 3, |
| 2, 3, 4, |
| 4, 8, 12, |
| 8, 12, 16}; |
| // clang-format on |
| Grid2D<int, 2, true, false> grid(x, 0, 2, 0, 3); |
| for (int r = 0; r < 2; ++r) { |
| for (int c = 0; c < 3; ++c) { |
| double value[2]; |
| grid.GetValue(r, c, value); |
| EXPECT_EQ(value[0], static_cast<double>(r + c + 1)); |
| EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1))); |
| } |
| } |
| } |
| |
| TEST(Grid2D, TwoDataDimensionColMajorInterleaved) { |
| // clang-format off |
| int x[] = { 1, 4, 2, 8, |
| 2, 8, 3, 12, |
| 3, 12, 4, 16}; |
| // clang-format on |
| Grid2D<int, 2, false, true> grid(x, 0, 2, 0, 3); |
| for (int r = 0; r < 2; ++r) { |
| for (int c = 0; c < 3; ++c) { |
| double value[2]; |
| grid.GetValue(r, c, value); |
| EXPECT_EQ(value[0], static_cast<double>(r + c + 1)); |
| EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1))); |
| } |
| } |
| } |
| |
| TEST(Grid2D, TwoDataDimensionColMajorStacked) { |
| // clang-format off |
| int x[] = {1, 2, |
| 2, 3, |
| 3, 4, |
| 4, 8, |
| 8, 12, |
| 12, 16}; |
| // clang-format on |
| Grid2D<int, 2, false, false> grid(x, 0, 2, 0, 3); |
| for (int r = 0; r < 2; ++r) { |
| for (int c = 0; c < 3; ++c) { |
| double value[2]; |
| grid.GetValue(r, c, value); |
| EXPECT_EQ(value[0], static_cast<double>(r + c + 1)); |
| EXPECT_EQ(value[1], static_cast<double>(4 * (r + c + 1))); |
| } |
| } |
| } |
| |
| class CubicInterpolatorTest : public ::testing::Test { |
| public: |
| template <int kDataDimension> |
| void RunPolynomialInterpolationTest(const double a, |
| const double b, |
| const double c, |
| const double d) { |
| values_ = std::make_unique<double[]>(kDataDimension * kNumSamples); |
| |
| for (int x = 0; x < kNumSamples; ++x) { |
| for (int dim = 0; dim < kDataDimension; ++dim) { |
| values_[x * kDataDimension + dim] = |
| (dim * dim + 1) * (a * x * x * x + b * x * x + c * x + d); |
| } |
| } |
| |
| Grid1D<double, kDataDimension> grid(values_.get(), 0, kNumSamples); |
| CubicInterpolator<Grid1D<double, kDataDimension>> interpolator(grid); |
| |
| // Check values in the all the cells but the first and the last |
| // ones. In these cells, the interpolated function values should |
| // match exactly the values of the function being interpolated. |
| // |
| // On the boundary, we extrapolate the values of the function on |
| // the basis of its first derivative, so we do not expect the |
| // function values and its derivatives not to match. |
| for (int j = 0; j < kNumTestSamples; ++j) { |
| const double x = 1.0 + 7.0 / (kNumTestSamples - 1) * j; |
| double expected_f[kDataDimension], expected_dfdx[kDataDimension]; |
| double f[kDataDimension], dfdx[kDataDimension]; |
| |
| for (int dim = 0; dim < kDataDimension; ++dim) { |
| expected_f[dim] = |
| (dim * dim + 1) * (a * x * x * x + b * x * x + c * x + d); |
| expected_dfdx[dim] = |
| (dim * dim + 1) * (3.0 * a * x * x + 2.0 * b * x + c); |
| } |
| |
| interpolator.Evaluate(x, f, dfdx); |
| for (int dim = 0; dim < kDataDimension; ++dim) { |
| EXPECT_NEAR(f[dim], expected_f[dim], kTolerance) |
| << "x: " << x << " dim: " << dim |
| << " actual f(x): " << expected_f[dim] |
| << " estimated f(x): " << f[dim]; |
| EXPECT_NEAR(dfdx[dim], expected_dfdx[dim], kTolerance) |
| << "x: " << x << " dim: " << dim |
| << " actual df(x)/dx: " << expected_dfdx[dim] |
| << " estimated df(x)/dx: " << dfdx[dim]; |
| } |
| } |
| } |
| |
| private: |
| static constexpr int kNumSamples = 10; |
| static constexpr int kNumTestSamples = 100; |
| std::unique_ptr<double[]> values_; |
| }; |
| |
| TEST_F(CubicInterpolatorTest, ConstantFunction) { |
| RunPolynomialInterpolationTest<1>(0.0, 0.0, 0.0, 0.5); |
| RunPolynomialInterpolationTest<2>(0.0, 0.0, 0.0, 0.5); |
| RunPolynomialInterpolationTest<3>(0.0, 0.0, 0.0, 0.5); |
| } |
| |
| TEST_F(CubicInterpolatorTest, LinearFunction) { |
| RunPolynomialInterpolationTest<1>(0.0, 0.0, 1.0, 0.5); |
| RunPolynomialInterpolationTest<2>(0.0, 0.0, 1.0, 0.5); |
| RunPolynomialInterpolationTest<3>(0.0, 0.0, 1.0, 0.5); |
| } |
| |
| TEST_F(CubicInterpolatorTest, QuadraticFunction) { |
| RunPolynomialInterpolationTest<1>(0.0, 0.4, 1.0, 0.5); |
| RunPolynomialInterpolationTest<2>(0.0, 0.4, 1.0, 0.5); |
| RunPolynomialInterpolationTest<3>(0.0, 0.4, 1.0, 0.5); |
| } |
| |
| TEST(CubicInterpolator, JetEvaluation) { |
| const double values[] = {1.0, 2.0, 2.0, 5.0, 3.0, 9.0, 2.0, 7.0}; |
| |
| Grid1D<double, 2, true> grid(values, 0, 4); |
| CubicInterpolator<Grid1D<double, 2, true>> interpolator(grid); |
| |
| double f[2], dfdx[2]; |
| const double x = 2.5; |
| interpolator.Evaluate(x, f, dfdx); |
| |
| // Create a Jet with the same scalar part as x, so that the output |
| // Jet will be evaluated at x. |
| Jet<double, 4> x_jet; |
| x_jet.a = x; |
| x_jet.v(0) = 1.0; |
| x_jet.v(1) = 1.1; |
| x_jet.v(2) = 1.2; |
| x_jet.v(3) = 1.3; |
| |
| Jet<double, 4> f_jets[2]; |
| interpolator.Evaluate(x_jet, f_jets); |
| |
| // Check that the scalar part of the Jet is f(x). |
| EXPECT_EQ(f_jets[0].a, f[0]); |
| EXPECT_EQ(f_jets[1].a, f[1]); |
| |
| // Check that the derivative part of the Jet is dfdx * x_jet.v |
| // by the chain rule. |
| EXPECT_NEAR((f_jets[0].v - dfdx[0] * x_jet.v).norm(), 0.0, kTolerance); |
| EXPECT_NEAR((f_jets[1].v - dfdx[1] * x_jet.v).norm(), 0.0, kTolerance); |
| } |
| |
| class BiCubicInterpolatorTest : public ::testing::Test { |
| public: |
| // This class needs to have an Eigen aligned operator new as it contains |
| // fixed-size Eigen types. |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| |
| template <int kDataDimension> |
| void RunPolynomialInterpolationTest(const Eigen::Matrix3d& coeff) { |
| values_ = std::make_unique<double[]>(kNumRows * kNumCols * kDataDimension); |
| coeff_ = coeff; |
| double* v = values_.get(); |
| for (int r = 0; r < kNumRows; ++r) { |
| for (int c = 0; c < kNumCols; ++c) { |
| for (int dim = 0; dim < kDataDimension; ++dim) { |
| *v++ = (dim * dim + 1) * EvaluateF(r, c); |
| } |
| } |
| } |
| |
| Grid2D<double, kDataDimension> grid( |
| values_.get(), 0, kNumRows, 0, kNumCols); |
| BiCubicInterpolator<Grid2D<double, kDataDimension>> interpolator(grid); |
| |
| for (int j = 0; j < kNumRowSamples; ++j) { |
| const double r = 1.0 + 7.0 / (kNumRowSamples - 1) * j; |
| for (int k = 0; k < kNumColSamples; ++k) { |
| const double c = 1.0 + 7.0 / (kNumColSamples - 1) * k; |
| double f[kDataDimension], dfdr[kDataDimension], dfdc[kDataDimension]; |
| interpolator.Evaluate(r, c, f, dfdr, dfdc); |
| for (int dim = 0; dim < kDataDimension; ++dim) { |
| EXPECT_NEAR(f[dim], (dim * dim + 1) * EvaluateF(r, c), kTolerance); |
| EXPECT_NEAR( |
| dfdr[dim], (dim * dim + 1) * EvaluatedFdr(r, c), kTolerance); |
| EXPECT_NEAR( |
| dfdc[dim], (dim * dim + 1) * EvaluatedFdc(r, c), kTolerance); |
| } |
| } |
| } |
| } |
| |
| private: |
| double EvaluateF(double r, double c) { |
| Eigen::Vector3d x; |
| x(0) = r; |
| x(1) = c; |
| x(2) = 1; |
| return x.transpose() * coeff_ * x; |
| } |
| |
| double EvaluatedFdr(double r, double c) { |
| Eigen::Vector3d x; |
| x(0) = r; |
| x(1) = c; |
| x(2) = 1; |
| return (coeff_.row(0) + coeff_.col(0).transpose()) * x; |
| } |
| |
| double EvaluatedFdc(double r, double c) { |
| Eigen::Vector3d x; |
| x(0) = r; |
| x(1) = c; |
| x(2) = 1; |
| return (coeff_.row(1) + coeff_.col(1).transpose()) * x; |
| } |
| |
| Eigen::Matrix3d coeff_; |
| static constexpr int kNumRows = 10; |
| static constexpr int kNumCols = 10; |
| static constexpr int kNumRowSamples = 100; |
| static constexpr int kNumColSamples = 100; |
| std::unique_ptr<double[]> values_; |
| }; |
| |
| TEST_F(BiCubicInterpolatorTest, ZeroFunction) { |
| Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); |
| RunPolynomialInterpolationTest<1>(coeff); |
| RunPolynomialInterpolationTest<2>(coeff); |
| RunPolynomialInterpolationTest<3>(coeff); |
| } |
| |
| TEST_F(BiCubicInterpolatorTest, Degree00Function) { |
| Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); |
| coeff(2, 2) = 1.0; |
| RunPolynomialInterpolationTest<1>(coeff); |
| RunPolynomialInterpolationTest<2>(coeff); |
| RunPolynomialInterpolationTest<3>(coeff); |
| } |
| |
| TEST_F(BiCubicInterpolatorTest, Degree01Function) { |
| Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); |
| coeff(2, 2) = 1.0; |
| coeff(0, 2) = 0.1; |
| coeff(2, 0) = 0.1; |
| RunPolynomialInterpolationTest<1>(coeff); |
| RunPolynomialInterpolationTest<2>(coeff); |
| RunPolynomialInterpolationTest<3>(coeff); |
| } |
| |
| TEST_F(BiCubicInterpolatorTest, Degree10Function) { |
| Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); |
| coeff(2, 2) = 1.0; |
| coeff(0, 1) = 0.1; |
| coeff(1, 0) = 0.1; |
| RunPolynomialInterpolationTest<1>(coeff); |
| RunPolynomialInterpolationTest<2>(coeff); |
| RunPolynomialInterpolationTest<3>(coeff); |
| } |
| |
| TEST_F(BiCubicInterpolatorTest, Degree11Function) { |
| Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); |
| coeff(2, 2) = 1.0; |
| coeff(0, 1) = 0.1; |
| coeff(1, 0) = 0.1; |
| coeff(0, 2) = 0.2; |
| coeff(2, 0) = 0.2; |
| RunPolynomialInterpolationTest<1>(coeff); |
| RunPolynomialInterpolationTest<2>(coeff); |
| RunPolynomialInterpolationTest<3>(coeff); |
| } |
| |
| TEST_F(BiCubicInterpolatorTest, Degree12Function) { |
| Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); |
| coeff(2, 2) = 1.0; |
| coeff(0, 1) = 0.1; |
| coeff(1, 0) = 0.1; |
| coeff(0, 2) = 0.2; |
| coeff(2, 0) = 0.2; |
| coeff(1, 1) = 0.3; |
| RunPolynomialInterpolationTest<1>(coeff); |
| RunPolynomialInterpolationTest<2>(coeff); |
| RunPolynomialInterpolationTest<3>(coeff); |
| } |
| |
| TEST_F(BiCubicInterpolatorTest, Degree21Function) { |
| Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); |
| coeff(2, 2) = 1.0; |
| coeff(0, 1) = 0.1; |
| coeff(1, 0) = 0.1; |
| coeff(0, 2) = 0.2; |
| coeff(2, 0) = 0.2; |
| coeff(0, 0) = 0.3; |
| RunPolynomialInterpolationTest<1>(coeff); |
| RunPolynomialInterpolationTest<2>(coeff); |
| RunPolynomialInterpolationTest<3>(coeff); |
| } |
| |
| TEST_F(BiCubicInterpolatorTest, Degree22Function) { |
| Eigen::Matrix3d coeff = Eigen::Matrix3d::Zero(); |
| coeff(2, 2) = 1.0; |
| coeff(0, 1) = 0.1; |
| coeff(1, 0) = 0.1; |
| coeff(0, 2) = 0.2; |
| coeff(2, 0) = 0.2; |
| coeff(0, 0) = 0.3; |
| coeff(0, 1) = -0.4; |
| coeff(1, 0) = -0.4; |
| RunPolynomialInterpolationTest<1>(coeff); |
| RunPolynomialInterpolationTest<2>(coeff); |
| RunPolynomialInterpolationTest<3>(coeff); |
| } |
| |
| TEST(BiCubicInterpolator, JetEvaluation) { |
| // clang-format off |
| const double values[] = {1.0, 5.0, 2.0, 10.0, 2.0, 6.0, 3.0, 5.0, |
| 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 1.0}; |
| // clang-format on |
| |
| Grid2D<double, 2> grid(values, 0, 2, 0, 4); |
| BiCubicInterpolator<Grid2D<double, 2>> interpolator(grid); |
| |
| double f[2], dfdr[2], dfdc[2]; |
| const double r = 0.5; |
| const double c = 2.5; |
| interpolator.Evaluate(r, c, f, dfdr, dfdc); |
| |
| // Create a Jet with the same scalar part as x, so that the output |
| // Jet will be evaluated at x. |
| Jet<double, 4> r_jet; |
| r_jet.a = r; |
| r_jet.v(0) = 1.0; |
| r_jet.v(1) = 1.1; |
| r_jet.v(2) = 1.2; |
| r_jet.v(3) = 1.3; |
| |
| Jet<double, 4> c_jet; |
| c_jet.a = c; |
| c_jet.v(0) = 2.0; |
| c_jet.v(1) = 3.1; |
| c_jet.v(2) = 4.2; |
| c_jet.v(3) = 5.3; |
| |
| Jet<double, 4> f_jets[2]; |
| interpolator.Evaluate(r_jet, c_jet, f_jets); |
| EXPECT_EQ(f_jets[0].a, f[0]); |
| EXPECT_EQ(f_jets[1].a, f[1]); |
| EXPECT_NEAR((f_jets[0].v - dfdr[0] * r_jet.v - dfdc[0] * c_jet.v).norm(), |
| 0.0, |
| kTolerance); |
| EXPECT_NEAR((f_jets[1].v - dfdr[1] * r_jet.v - dfdc[1] * c_jet.v).norm(), |
| 0.0, |
| kTolerance); |
| } |
| |
| } // namespace ceres::internal |