| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) |
| |
| #include "ceres/internal/config.h" |
| |
| #ifndef CERES_NO_CUDA |
| |
| #include <numeric> |
| |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/cuda_block_structure.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres::internal { |
| |
| class CudaBlockStructureTest : public ::testing::Test { |
| protected: |
| void SetUp() final { |
| std::string message; |
| ASSERT_TRUE(context_.InitCuda(&message)) |
| << "InitCuda() failed because: " << message; |
| |
| BlockSparseMatrix::RandomMatrixOptions options; |
| options.num_row_blocks = 1234; |
| options.min_row_block_size = 1; |
| options.max_row_block_size = 10; |
| options.num_col_blocks = 567; |
| options.min_col_block_size = 1; |
| options.max_col_block_size = 10; |
| options.block_density = 0.2; |
| std::mt19937 rng; |
| A_ = BlockSparseMatrix::CreateRandomMatrix(options, rng); |
| std::iota( |
| A_->mutable_values(), A_->mutable_values() + A_->num_nonzeros(), 1); |
| } |
| |
| std::vector<Cell> GetCells(const CudaBlockSparseStructure& structure) { |
| const auto& cuda_buffer = structure.cells_; |
| std::vector<Cell> cells(cuda_buffer.size()); |
| cuda_buffer.CopyToCpu(cells.data(), cells.size()); |
| return cells; |
| } |
| std::vector<Block> GetRowBlocks(const CudaBlockSparseStructure& structure) { |
| const auto& cuda_buffer = structure.row_blocks_; |
| std::vector<Block> blocks(cuda_buffer.size()); |
| cuda_buffer.CopyToCpu(blocks.data(), blocks.size()); |
| return blocks; |
| } |
| std::vector<Block> GetColBlocks(const CudaBlockSparseStructure& structure) { |
| const auto& cuda_buffer = structure.col_blocks_; |
| std::vector<Block> blocks(cuda_buffer.size()); |
| cuda_buffer.CopyToCpu(blocks.data(), blocks.size()); |
| return blocks; |
| } |
| std::vector<int> GetRowBlockOffsets( |
| const CudaBlockSparseStructure& structure) { |
| const auto& cuda_buffer = structure.first_cell_in_row_block_; |
| std::vector<int> first_cell_in_row_block(cuda_buffer.size()); |
| cuda_buffer.CopyToCpu(first_cell_in_row_block.data(), |
| first_cell_in_row_block.size()); |
| return first_cell_in_row_block; |
| } |
| |
| std::unique_ptr<BlockSparseMatrix> A_; |
| ContextImpl context_; |
| }; |
| |
| TEST_F(CudaBlockStructureTest, StructureIdentity) { |
| auto block_structure = A_->block_structure(); |
| const int num_row_blocks = block_structure->rows.size(); |
| const int num_col_blocks = block_structure->cols.size(); |
| |
| CudaBlockSparseStructure cuda_block_structure(*block_structure, &context_); |
| |
| ASSERT_EQ(cuda_block_structure.num_rows(), A_->num_rows()); |
| ASSERT_EQ(cuda_block_structure.num_cols(), A_->num_cols()); |
| ASSERT_EQ(cuda_block_structure.num_nonzeros(), A_->num_nonzeros()); |
| ASSERT_EQ(cuda_block_structure.num_row_blocks(), num_row_blocks); |
| ASSERT_EQ(cuda_block_structure.num_col_blocks(), num_col_blocks); |
| |
| std::vector<Block> blocks = GetColBlocks(cuda_block_structure); |
| ASSERT_EQ(blocks.size(), num_col_blocks); |
| for (int i = 0; i < num_col_blocks; ++i) { |
| EXPECT_EQ(block_structure->cols[i].position, blocks[i].position); |
| EXPECT_EQ(block_structure->cols[i].size, blocks[i].size); |
| } |
| |
| std::vector<Cell> cells = GetCells(cuda_block_structure); |
| std::vector<int> first_cell_in_row_block = |
| GetRowBlockOffsets(cuda_block_structure); |
| blocks = GetRowBlocks(cuda_block_structure); |
| |
| ASSERT_EQ(blocks.size(), num_row_blocks); |
| ASSERT_EQ(first_cell_in_row_block.size(), num_row_blocks + 1); |
| ASSERT_EQ(first_cell_in_row_block.back(), cells.size()); |
| |
| for (int i = 0; i < num_row_blocks; ++i) { |
| const int num_cells = block_structure->rows[i].cells.size(); |
| EXPECT_EQ(blocks[i].position, block_structure->rows[i].block.position); |
| EXPECT_EQ(blocks[i].size, block_structure->rows[i].block.size); |
| const int first_cell = first_cell_in_row_block[i]; |
| const int last_cell = first_cell_in_row_block[i + 1]; |
| ASSERT_EQ(last_cell - first_cell, num_cells); |
| for (int j = 0; j < num_cells; ++j) { |
| EXPECT_EQ(cells[first_cell + j].block_id, |
| block_structure->rows[i].cells[j].block_id); |
| EXPECT_EQ(cells[first_cell + j].position, |
| block_structure->rows[i].cells[j].position); |
| } |
| } |
| } |
| |
| } // namespace ceres::internal |
| |
| #endif // CERES_NO_CUDA |