| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) |
| |
| #include "ceres/cuda_partitioned_block_sparse_crs_view.h" |
| |
| #include "absl/log/check.h" |
| #include "gtest/gtest.h" |
| |
| #ifndef CERES_NO_CUDA |
| |
| namespace ceres::internal { |
| |
| namespace { |
| struct RandomPartitionedMatrixOptions { |
| int num_row_blocks_e; |
| int num_row_blocks_f; |
| int num_col_blocks_e; |
| int num_col_blocks_f; |
| int min_row_block_size; |
| int max_row_block_size; |
| int min_col_block_size; |
| int max_col_block_size; |
| double empty_f_probability; |
| double cell_probability_f; |
| int max_cells_f; |
| }; |
| |
| std::unique_ptr<BlockSparseMatrix> CreateRandomPartitionedMatrix( |
| const RandomPartitionedMatrixOptions& options, std::mt19937& rng) { |
| const int num_row_blocks = |
| std::max(options.num_row_blocks_e, options.num_row_blocks_f); |
| const int num_col_blocks = |
| options.num_col_blocks_e + options.num_col_blocks_f; |
| |
| CompressedRowBlockStructure* block_structure = |
| new CompressedRowBlockStructure; |
| block_structure->cols.reserve(num_col_blocks); |
| block_structure->rows.reserve(num_row_blocks); |
| |
| // Create column blocks |
| std::uniform_int_distribution<int> col_size(options.min_col_block_size, |
| options.max_col_block_size); |
| int num_cols = 0; |
| for (int i = 0; i < num_col_blocks; ++i) { |
| const int size = col_size(rng); |
| block_structure->cols.emplace_back(size, num_cols); |
| num_cols += size; |
| } |
| |
| // Prepare column-block indices of E cells |
| std::vector<int> e_col_block_idx; |
| e_col_block_idx.reserve(options.num_row_blocks_e); |
| std::uniform_int_distribution<int> col_e(0, options.num_col_blocks_e - 1); |
| for (int i = 0; i < options.num_row_blocks_e; ++i) { |
| e_col_block_idx.emplace_back(col_e(rng)); |
| } |
| std::sort(e_col_block_idx.begin(), e_col_block_idx.end()); |
| |
| // Prepare cell structure |
| std::uniform_int_distribution<int> row_size(options.min_row_block_size, |
| options.max_row_block_size); |
| std::uniform_real_distribution<double> uniform; |
| int num_rows = 0; |
| for (int i = 0; i < num_row_blocks; ++i) { |
| const int size = row_size(rng); |
| block_structure->rows.emplace_back(); |
| auto& row = block_structure->rows.back(); |
| row.block.size = size; |
| row.block.position = num_rows; |
| num_rows += size; |
| if (i < options.num_row_blocks_e) { |
| row.cells.emplace_back(e_col_block_idx[i], -1); |
| if (uniform(rng) < options.empty_f_probability) { |
| continue; |
| } |
| } |
| if (i >= options.num_row_blocks_f) continue; |
| const int cells_before = row.cells.size(); |
| for (int j = options.num_col_blocks_e; j < num_col_blocks; ++j) { |
| if (uniform(rng) > options.cell_probability_f) { |
| continue; |
| } |
| row.cells.emplace_back(j, -1); |
| } |
| if (row.cells.size() > cells_before + options.max_cells_f) { |
| std::shuffle(row.cells.begin() + cells_before, row.cells.end(), rng); |
| row.cells.resize(cells_before + options.max_cells_f); |
| std::sort( |
| row.cells.begin(), row.cells.end(), [](const auto& a, const auto& b) { |
| return a.block_id < b.block_id; |
| }); |
| } |
| } |
| |
| // Fill positions in E sub-matrix |
| int num_nonzeros = 0; |
| for (int i = 0; i < options.num_row_blocks_e; ++i) { |
| CHECK_GE(block_structure->rows[i].cells.size(), 1); |
| block_structure->rows[i].cells[0].position = num_nonzeros; |
| const int col_block_size = |
| block_structure->cols[block_structure->rows[i].cells[0].block_id].size; |
| const int row_block_size = block_structure->rows[i].block.size; |
| num_nonzeros += row_block_size * col_block_size; |
| CHECK_GE(num_nonzeros, 0); |
| } |
| // Fill positions in F sub-matrix |
| for (int i = 0; i < options.num_row_blocks_f; ++i) { |
| const int row_block_size = block_structure->rows[i].block.size; |
| for (auto& cell : block_structure->rows[i].cells) { |
| if (cell.position >= 0) continue; |
| cell.position = num_nonzeros; |
| const int col_block_size = block_structure->cols[cell.block_id].size; |
| num_nonzeros += row_block_size * col_block_size; |
| CHECK_GE(num_nonzeros, 0); |
| } |
| } |
| // Populate values |
| auto bsm = std::make_unique<BlockSparseMatrix>(block_structure, true); |
| for (int i = 0; i < num_nonzeros; ++i) { |
| bsm->mutable_values()[i] = i + 1; |
| } |
| return bsm; |
| } |
| } // namespace |
| |
| class CudaPartitionedBlockSparseCRSViewTest : public ::testing::Test { |
| static constexpr int kNumColBlocksE = 456; |
| |
| protected: |
| void SetUp() final { |
| std::string message; |
| ASSERT_TRUE(context_.InitCuda(&message)) |
| << "InitCuda() failed because: " << message; |
| |
| RandomPartitionedMatrixOptions options; |
| options.num_row_blocks_f = 123; |
| options.num_row_blocks_e = 456; |
| options.num_col_blocks_f = 123; |
| options.num_col_blocks_e = kNumColBlocksE; |
| options.min_row_block_size = 1; |
| options.max_row_block_size = 4; |
| options.min_col_block_size = 1; |
| options.max_col_block_size = 4; |
| options.empty_f_probability = .1; |
| options.cell_probability_f = .2; |
| options.max_cells_f = options.num_col_blocks_f; |
| |
| std::mt19937 rng; |
| short_f_ = CreateRandomPartitionedMatrix(options, rng); |
| |
| options.num_row_blocks_e = 123; |
| options.num_row_blocks_f = 456; |
| short_e_ = CreateRandomPartitionedMatrix(options, rng); |
| |
| options.max_cells_f = 1; |
| options.num_row_blocks_e = options.num_row_blocks_f; |
| options.num_row_blocks_e = options.num_row_blocks_f; |
| f_crs_compatible_ = CreateRandomPartitionedMatrix(options, rng); |
| } |
| |
| void TestMatrix(const BlockSparseMatrix& A_) { |
| const int num_col_blocks_e = 456; |
| CudaPartitionedBlockSparseCRSView view(A_, kNumColBlocksE, &context_); |
| |
| const int num_rows = A_.num_rows(); |
| const int num_cols = A_.num_cols(); |
| |
| const auto& bs = *A_.block_structure(); |
| const int num_cols_e = bs.cols[num_col_blocks_e].position; |
| const int num_cols_f = num_cols - num_cols_e; |
| |
| auto matrix_e = view.matrix_e(); |
| auto matrix_f = view.matrix_f(); |
| ASSERT_EQ(matrix_e->num_cols(), num_cols_e); |
| ASSERT_EQ(matrix_e->num_rows(), num_rows); |
| ASSERT_EQ(matrix_f->num_cols(), num_cols_f); |
| ASSERT_EQ(matrix_f->num_rows(), num_rows); |
| |
| Vector x(num_cols); |
| Vector x_left(num_cols_e); |
| Vector x_right(num_cols_f); |
| Vector y(num_rows); |
| CudaVector x_cuda(&context_, num_cols); |
| CudaVector x_left_cuda(&context_, num_cols_e); |
| CudaVector x_right_cuda(&context_, num_cols_f); |
| CudaVector y_cuda(&context_, num_rows); |
| Vector y_cuda_host(num_rows); |
| |
| for (int i = 0; i < num_cols_e; ++i) { |
| x.setZero(); |
| x_left.setZero(); |
| y.setZero(); |
| y_cuda.SetZero(); |
| x[i] = 1.; |
| x_left[i] = 1.; |
| x_left_cuda.CopyFromCpu(x_left); |
| A_.RightMultiplyAndAccumulate( |
| x.data(), y.data(), &context_, std::thread::hardware_concurrency()); |
| matrix_e->RightMultiplyAndAccumulate(x_left_cuda, &y_cuda); |
| y_cuda.CopyTo(&y_cuda_host); |
| // There will be up to 1 non-zero product per row, thus we expect an exact |
| // match on 32-bit integer indices |
| EXPECT_EQ((y - y_cuda_host).squaredNorm(), 0.); |
| } |
| for (int i = num_cols_e; i < num_cols_f; ++i) { |
| x.setZero(); |
| x_right.setZero(); |
| y.setZero(); |
| y_cuda.SetZero(); |
| x[i] = 1.; |
| x_right[i - num_cols_e] = 1.; |
| x_right_cuda.CopyFromCpu(x_right); |
| A_.RightMultiplyAndAccumulate( |
| x.data(), y.data(), &context_, std::thread::hardware_concurrency()); |
| matrix_f->RightMultiplyAndAccumulate(x_right_cuda, &y_cuda); |
| y_cuda.CopyTo(&y_cuda_host); |
| // There will be up to 1 non-zero product per row, thus we expect an exact |
| // match on 32-bit integer indices |
| EXPECT_EQ((y - y_cuda_host).squaredNorm(), 0.); |
| } |
| } |
| |
| // E sub-matrix might have less row-blocks with cells than F sub-matrix. This |
| // test matrix checks if this case is handled properly |
| std::unique_ptr<BlockSparseMatrix> short_e_; |
| // In case of non-crs compatible F matrix, permuting values from block-order |
| // to crs order involves binary search over row-blocks of F. Having lots of |
| // row-blocks with no F cells is an edge case for this algorithm. |
| std::unique_ptr<BlockSparseMatrix> short_f_; |
| // With F matrix being CRS-compatible, update of the values of partitioned |
| // matrix view reduces to two host->device memcopies, and uses a separate code |
| // path |
| std::unique_ptr<BlockSparseMatrix> f_crs_compatible_; |
| |
| ContextImpl context_; |
| }; |
| |
| TEST_F(CudaPartitionedBlockSparseCRSViewTest, CreateUpdateValuesShortE) { |
| TestMatrix(*short_e_); |
| } |
| |
| TEST_F(CudaPartitionedBlockSparseCRSViewTest, CreateUpdateValuesShortF) { |
| TestMatrix(*short_f_); |
| } |
| |
| TEST_F(CudaPartitionedBlockSparseCRSViewTest, |
| CreateUpdateValuesCrsCompatibleF) { |
| TestMatrix(*f_crs_compatible_); |
| } |
| } // namespace ceres::internal |
| |
| #endif // CERES_NO_CUDA |