| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: joydeepb@cs.utexas.edu (Joydeep Biswas) |
| |
| #include "ceres/cuda_sparse_matrix.h" |
| |
| #include <string> |
| |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/casts.h" |
| #include "ceres/cuda_vector.h" |
| #include "ceres/internal/config.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/linear_least_squares_problems.h" |
| #include "ceres/triplet_sparse_matrix.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| #ifndef CERES_NO_CUDA |
| |
| class CudaSparseMatrixTest : public ::testing::Test { |
| protected: |
| void SetUp() final { |
| std::string message; |
| ASSERT_TRUE(context_.InitCuda(&message)) |
| << "InitCuda() failed because: " << message; |
| std::unique_ptr<LinearLeastSquaresProblem> problem = |
| CreateLinearLeastSquaresProblemFromId(2); |
| ASSERT_TRUE(problem != nullptr); |
| A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release())); |
| ASSERT_TRUE(A_ != nullptr); |
| ASSERT_TRUE(problem->b != nullptr); |
| ASSERT_TRUE(problem->x != nullptr); |
| b_.resize(A_->num_rows()); |
| for (int i = 0; i < A_->num_rows(); ++i) { |
| b_[i] = problem->b[i]; |
| } |
| x_.resize(A_->num_cols()); |
| for (int i = 0; i < A_->num_cols(); ++i) { |
| x_[i] = problem->x[i]; |
| } |
| ASSERT_EQ(A_->num_rows(), b_.rows()); |
| ASSERT_EQ(A_->num_cols(), x_.rows()); |
| } |
| |
| std::unique_ptr<BlockSparseMatrix> A_; |
| Vector x_; |
| Vector b_; |
| ContextImpl context_; |
| }; |
| |
| TEST_F(CudaSparseMatrixTest, RightMultiplyAndAccumulate) { |
| std::string message; |
| auto A_crs = A_->ToCompressedRowSparseMatrix(); |
| CudaSparseMatrix A_gpu(&context_, *A_crs); |
| CudaVector x_gpu(&context_, A_gpu.num_cols()); |
| CudaVector res_gpu(&context_, A_gpu.num_rows()); |
| x_gpu.CopyFromCpu(x_); |
| |
| const Vector minus_b = -b_; |
| // res = -b |
| res_gpu.CopyFromCpu(minus_b); |
| // res += A * x |
| A_gpu.RightMultiplyAndAccumulate(x_gpu, &res_gpu); |
| |
| Vector res; |
| res_gpu.CopyTo(&res); |
| |
| Vector res_expected = minus_b; |
| A_->RightMultiplyAndAccumulate(x_.data(), res_expected.data()); |
| |
| EXPECT_LE((res - res_expected).norm(), |
| std::numeric_limits<double>::epsilon() * 1e3); |
| } |
| |
| TEST(CudaSparseMatrix, CopyValuesFromCpu) { |
| // A1: |
| // [ 1 1 0 0 |
| // 0 1 1 0] |
| // A2: |
| // [ 1 2 0 0 |
| // 0 3 4 0] |
| // b: [1 2 3 4]' |
| // A1 * b = [3 5]' |
| // A2 * b = [5 18]' |
| TripletSparseMatrix A1(2, 4, {0, 0, 1, 1}, {0, 1, 1, 2}, {1, 1, 1, 1}); |
| TripletSparseMatrix A2(2, 4, {0, 0, 1, 1}, {0, 1, 1, 2}, {1, 2, 3, 4}); |
| Vector b(4); |
| b << 1, 2, 3, 4; |
| |
| ContextImpl context; |
| std::string message; |
| ASSERT_TRUE(context.InitCuda(&message)) |
| << "InitCuda() failed because: " << message; |
| auto A1_crs = CompressedRowSparseMatrix::FromTripletSparseMatrix(A1); |
| CudaSparseMatrix A_gpu(&context, *A1_crs); |
| CudaVector b_gpu(&context, A1.num_cols()); |
| CudaVector x_gpu(&context, A1.num_rows()); |
| b_gpu.CopyFromCpu(b); |
| x_gpu.SetZero(); |
| |
| Vector x_expected(2); |
| x_expected << 3, 5; |
| A_gpu.RightMultiplyAndAccumulate(b_gpu, &x_gpu); |
| Vector x_computed; |
| x_gpu.CopyTo(&x_computed); |
| EXPECT_EQ(x_computed, x_expected); |
| |
| auto A2_crs = CompressedRowSparseMatrix::FromTripletSparseMatrix(A2); |
| A_gpu.CopyValuesFromCpu(*A2_crs); |
| x_gpu.SetZero(); |
| x_expected << 5, 18; |
| A_gpu.RightMultiplyAndAccumulate(b_gpu, &x_gpu); |
| x_gpu.CopyTo(&x_computed); |
| EXPECT_EQ(x_computed, x_expected); |
| } |
| |
| TEST(CudaSparseMatrix, RightMultiplyAndAccumulate) { |
| // A: |
| // [ 1 2 0 0 |
| // 0 3 4 0] |
| // b: [1 2 3 4]' |
| // A * b = [5 18]' |
| TripletSparseMatrix A(2, 4, {0, 0, 1, 1}, {0, 1, 1, 2}, {1, 2, 3, 4}); |
| Vector b(4); |
| b << 1, 2, 3, 4; |
| Vector x_expected(2); |
| x_expected << 5, 18; |
| |
| ContextImpl context; |
| std::string message; |
| ASSERT_TRUE(context.InitCuda(&message)) |
| << "InitCuda() failed because: " << message; |
| auto A_crs = CompressedRowSparseMatrix::FromTripletSparseMatrix(A); |
| CudaSparseMatrix A_gpu(&context, *A_crs); |
| CudaVector b_gpu(&context, A.num_cols()); |
| CudaVector x_gpu(&context, A.num_rows()); |
| b_gpu.CopyFromCpu(b); |
| x_gpu.SetZero(); |
| |
| A_gpu.RightMultiplyAndAccumulate(b_gpu, &x_gpu); |
| |
| Vector x_computed; |
| x_gpu.CopyTo(&x_computed); |
| |
| EXPECT_EQ(x_computed, x_expected); |
| } |
| |
| TEST(CudaSparseMatrix, LeftMultiplyAndAccumulate) { |
| // A: |
| // [ 1 2 0 0 |
| // 0 3 4 0] |
| // b: [1 2]' |
| // A'* b = [1 8 8 0]' |
| TripletSparseMatrix A(2, 4, {0, 0, 1, 1}, {0, 1, 1, 2}, {1, 2, 3, 4}); |
| Vector b(2); |
| b << 1, 2; |
| Vector x_expected(4); |
| x_expected << 1, 8, 8, 0; |
| |
| ContextImpl context; |
| std::string message; |
| ASSERT_TRUE(context.InitCuda(&message)) |
| << "InitCuda() failed because: " << message; |
| auto A_crs = CompressedRowSparseMatrix::FromTripletSparseMatrix(A); |
| CudaSparseMatrix A_gpu(&context, *A_crs); |
| CudaVector b_gpu(&context, A.num_rows()); |
| CudaVector x_gpu(&context, A.num_cols()); |
| b_gpu.CopyFromCpu(b); |
| x_gpu.SetZero(); |
| |
| A_gpu.LeftMultiplyAndAccumulate(b_gpu, &x_gpu); |
| |
| Vector x_computed; |
| x_gpu.CopyTo(&x_computed); |
| |
| EXPECT_EQ(x_computed, x_expected); |
| } |
| |
| // If there are numerical errors due to synchronization issues, they will show |
| // up when testing with large matrices, since each operation will take |
| // significant time, thus hopefully revealing any potential synchronization |
| // issues. |
| TEST(CudaSparseMatrix, LargeMultiplyAndAccumulate) { |
| // Create a large NxN matrix A that has the following structure: |
| // In row i, only columns i and i+1 are non-zero. |
| // A_{i, i} = A_{i, i+1} = 1. |
| // There will be 2 * N - 1 non-zero elements in A. |
| // X = [1:N] |
| // Right multiply test: |
| // b = A * X |
| // Left multiply test: |
| // b = A' * X |
| |
| const int N = 10 * 1000 * 1000; |
| const int num_non_zeros = 2 * N - 1; |
| std::vector<int> row_indices(num_non_zeros); |
| std::vector<int> col_indices(num_non_zeros); |
| std::vector<double> values(num_non_zeros); |
| |
| for (int i = 0; i < N; ++i) { |
| row_indices[2 * i] = i; |
| col_indices[2 * i] = i; |
| values[2 * i] = 1.0; |
| if (i + 1 < N) { |
| col_indices[2 * i + 1] = i + 1; |
| row_indices[2 * i + 1] = i; |
| values[2 * i + 1] = 1; |
| } |
| } |
| TripletSparseMatrix A(N, N, row_indices, col_indices, values); |
| Vector x(N); |
| for (int i = 0; i < N; ++i) { |
| x[i] = i + 1; |
| } |
| |
| ContextImpl context; |
| std::string message; |
| ASSERT_TRUE(context.InitCuda(&message)) |
| << "InitCuda() failed because: " << message; |
| auto A_crs = CompressedRowSparseMatrix::FromTripletSparseMatrix(A); |
| CudaSparseMatrix A_gpu(&context, *A_crs); |
| CudaVector b_gpu(&context, N); |
| CudaVector x_gpu(&context, N); |
| x_gpu.CopyFromCpu(x); |
| |
| // First check RightMultiply. |
| { |
| b_gpu.SetZero(); |
| A_gpu.RightMultiplyAndAccumulate(x_gpu, &b_gpu); |
| Vector b_computed; |
| b_gpu.CopyTo(&b_computed); |
| for (int i = 0; i < N; ++i) { |
| if (i + 1 < N) { |
| EXPECT_EQ(b_computed[i], 2 * (i + 1) + 1); |
| } else { |
| EXPECT_EQ(b_computed[i], i + 1); |
| } |
| } |
| } |
| |
| // Next check LeftMultiply. |
| { |
| b_gpu.SetZero(); |
| A_gpu.LeftMultiplyAndAccumulate(x_gpu, &b_gpu); |
| Vector b_computed; |
| b_gpu.CopyTo(&b_computed); |
| for (int i = 0; i < N; ++i) { |
| if (i > 0) { |
| EXPECT_EQ(b_computed[i], 2 * (i + 1) - 1); |
| } else { |
| EXPECT_EQ(b_computed[i], i + 1); |
| } |
| } |
| } |
| } |
| |
| #endif // CERES_NO_CUDA |
| |
| } // namespace internal |
| } // namespace ceres |