| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/dense_normal_cholesky_solver.h" |
| |
| #include <utility> |
| |
| #include "Eigen/Dense" |
| #include "ceres/dense_sparse_matrix.h" |
| #include "ceres/event_logger.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/types.h" |
| |
| namespace ceres::internal { |
| |
| DenseNormalCholeskySolver::DenseNormalCholeskySolver( |
| LinearSolver::Options options) |
| : options_(std::move(options)), |
| cholesky_(DenseCholesky::Create(options_)) {} |
| |
| LinearSolver::Summary DenseNormalCholeskySolver::SolveImpl( |
| DenseSparseMatrix* A, |
| const double* b, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double* x) { |
| EventLogger event_logger("DenseNormalCholeskySolver::Solve"); |
| |
| const int num_rows = A->num_rows(); |
| const int num_cols = A->num_cols(); |
| |
| Matrix lhs(num_cols, num_cols); |
| lhs.setZero(); |
| |
| event_logger.AddEvent("Setup"); |
| |
| // lhs += A'A |
| // |
| // Using rankUpdate instead of GEMM, exposes the fact that its the |
| // same matrix being multiplied with itself and that the product is |
| // symmetric. |
| lhs.selfadjointView<Eigen::Upper>().rankUpdate(A->matrix().transpose()); |
| |
| // rhs = A'b |
| Vector rhs = A->matrix().transpose() * ConstVectorRef(b, num_rows); |
| |
| if (per_solve_options.D != nullptr) { |
| ConstVectorRef D(per_solve_options.D, num_cols); |
| lhs += D.array().square().matrix().asDiagonal(); |
| } |
| event_logger.AddEvent("Product"); |
| |
| LinearSolver::Summary summary; |
| summary.num_iterations = 1; |
| summary.termination_type = cholesky_->FactorAndSolve( |
| num_cols, lhs.data(), rhs.data(), x, &summary.message); |
| event_logger.AddEvent("FactorAndSolve"); |
| |
| return summary; |
| } |
| |
| } // namespace ceres::internal |