| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/invert_psd_matrix.h" |
| |
| #include "ceres/internal/eigen.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres::internal { |
| |
| static constexpr bool kFullRank = true; |
| static constexpr bool kRankDeficient = false; |
| |
| template <int kSize> |
| typename EigenTypes<kSize, kSize>::Matrix RandomPSDMatrixWithEigenValues( |
| const typename EigenTypes<kSize>::Vector& eigenvalues) { |
| typename EigenTypes<kSize, kSize>::Matrix m(eigenvalues.rows(), |
| eigenvalues.rows()); |
| m.setRandom(); |
| Eigen::SelfAdjointEigenSolver<typename EigenTypes<kSize, kSize>::Matrix> es( |
| m); |
| return es.eigenvectors() * eigenvalues.asDiagonal() * |
| es.eigenvectors().transpose(); |
| } |
| |
| TEST(InvertPSDMatrix, Identity3x3) { |
| const Matrix m = Matrix::Identity(3, 3); |
| const Matrix inverse_m = InvertPSDMatrix<3>(kFullRank, m); |
| EXPECT_NEAR((inverse_m - m).norm() / m.norm(), |
| 0.0, |
| std::numeric_limits<double>::epsilon()); |
| } |
| |
| TEST(InvertPSDMatrix, FullRank5x5) { |
| EigenTypes<5>::Vector eigenvalues; |
| eigenvalues.setRandom(); |
| eigenvalues = eigenvalues.array().abs().matrix(); |
| const Matrix m = RandomPSDMatrixWithEigenValues<5>(eigenvalues); |
| const Matrix inverse_m = InvertPSDMatrix<5>(kFullRank, m); |
| EXPECT_NEAR((m * inverse_m - Matrix::Identity(5, 5)).norm() / 5.0, |
| 0.0, |
| 10 * std::numeric_limits<double>::epsilon()); |
| } |
| |
| TEST(InvertPSDMatrix, RankDeficient5x5) { |
| EigenTypes<5>::Vector eigenvalues; |
| eigenvalues.setRandom(); |
| eigenvalues = eigenvalues.array().abs().matrix(); |
| eigenvalues(3) = 0.0; |
| const Matrix m = RandomPSDMatrixWithEigenValues<5>(eigenvalues); |
| const Matrix inverse_m = InvertPSDMatrix<5>(kRankDeficient, m); |
| Matrix pseudo_identity = Matrix::Identity(5, 5); |
| pseudo_identity(3, 3) = 0.0; |
| EXPECT_NEAR((m * inverse_m * m - m).norm() / m.norm(), |
| 0.0, |
| 10 * std::numeric_limits<double>::epsilon()); |
| } |
| |
| TEST(InvertPSDMatrix, DynamicFullRank5x5) { |
| EigenTypes<Eigen::Dynamic>::Vector eigenvalues(5); |
| eigenvalues.setRandom(); |
| eigenvalues = eigenvalues.array().abs().matrix(); |
| const Matrix m = RandomPSDMatrixWithEigenValues<Eigen::Dynamic>(eigenvalues); |
| const Matrix inverse_m = InvertPSDMatrix<Eigen::Dynamic>(kFullRank, m); |
| EXPECT_NEAR((m * inverse_m - Matrix::Identity(5, 5)).norm() / 5.0, |
| 0.0, |
| 10 * std::numeric_limits<double>::epsilon()); |
| } |
| |
| TEST(InvertPSDMatrix, DynamicRankDeficient5x5) { |
| EigenTypes<Eigen::Dynamic>::Vector eigenvalues(5); |
| eigenvalues.setRandom(); |
| eigenvalues = eigenvalues.array().abs().matrix(); |
| eigenvalues(3) = 0.0; |
| const Matrix m = RandomPSDMatrixWithEigenValues<Eigen::Dynamic>(eigenvalues); |
| const Matrix inverse_m = InvertPSDMatrix<Eigen::Dynamic>(kRankDeficient, m); |
| Matrix pseudo_identity = Matrix::Identity(5, 5); |
| pseudo_identity(3, 3) = 0.0; |
| EXPECT_NEAR((m * inverse_m * m - m).norm() / m.norm(), |
| 0.0, |
| 10 * std::numeric_limits<double>::epsilon()); |
| } |
| |
| } // namespace ceres::internal |