| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| |
| #include "ceres/block_jacobi_preconditioner.h" |
| |
| #include "Eigen/Cholesky" |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/block_structure.h" |
| #include "ceres/casts.h" |
| #include "ceres/integral_types.h" |
| #include "ceres/internal/eigen.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| BlockJacobiPreconditioner::BlockJacobiPreconditioner( |
| const BlockSparseMatrix& A) |
| : num_rows_(A.num_rows()), |
| block_structure_(*A.block_structure()) { |
| // Calculate the amount of storage needed. |
| int storage_needed = 0; |
| for (int c = 0; c < block_structure_.cols.size(); ++c) { |
| int size = block_structure_.cols[c].size; |
| storage_needed += size * size; |
| } |
| |
| // Size the offsets and storage. |
| blocks_.resize(block_structure_.cols.size()); |
| block_storage_.resize(storage_needed); |
| |
| // Put pointers to the storage in the offsets. |
| double* block_cursor = &block_storage_[0]; |
| for (int c = 0; c < block_structure_.cols.size(); ++c) { |
| int size = block_structure_.cols[c].size; |
| blocks_[c] = block_cursor; |
| block_cursor += size * size; |
| } |
| } |
| |
| BlockJacobiPreconditioner::~BlockJacobiPreconditioner() {} |
| |
| bool BlockJacobiPreconditioner::Update(const BlockSparseMatrix& A, |
| const double* D) { |
| const CompressedRowBlockStructure* bs = A.block_structure(); |
| |
| // Compute the diagonal blocks by block inner products. |
| std::fill(block_storage_.begin(), block_storage_.end(), 0.0); |
| const double* values = A.values(); |
| for (int r = 0; r < bs->rows.size(); ++r) { |
| const int row_block_size = bs->rows[r].block.size; |
| const vector<Cell>& cells = bs->rows[r].cells; |
| for (int c = 0; c < cells.size(); ++c) { |
| const int col_block_size = bs->cols[cells[c].block_id].size; |
| ConstMatrixRef m(values + cells[c].position, |
| row_block_size, |
| col_block_size); |
| |
| MatrixRef(blocks_[cells[c].block_id], |
| col_block_size, |
| col_block_size).noalias() += m.transpose() * m; |
| |
| // TODO(keir): Figure out when the below expression is actually faster |
| // than doing the full rank update. The issue is that for smaller sizes, |
| // the rankUpdate() function is slower than the full product done above. |
| // |
| // On the typical bundling problems, the above product is ~5% faster. |
| // |
| // MatrixRef(blocks_[cells[c].block_id], |
| // col_block_size, |
| // col_block_size).selfadjointView<Eigen::Upper>().rankUpdate(m); |
| // |
| } |
| } |
| |
| // Add the diagonal and invert each block. |
| for (int c = 0; c < bs->cols.size(); ++c) { |
| const int size = block_structure_.cols[c].size; |
| const int position = block_structure_.cols[c].position; |
| MatrixRef block(blocks_[c], size, size); |
| |
| if (D != NULL) { |
| block.diagonal() += |
| ConstVectorRef(D + position, size).array().square().matrix(); |
| } |
| |
| block = block.selfadjointView<Eigen::Upper>() |
| .ldlt() |
| .solve(Matrix::Identity(size, size)); |
| } |
| return true; |
| } |
| |
| void BlockJacobiPreconditioner::RightMultiply(const double* x, |
| double* y) const { |
| for (int c = 0; c < block_structure_.cols.size(); ++c) { |
| const int size = block_structure_.cols[c].size; |
| const int position = block_structure_.cols[c].position; |
| ConstMatrixRef D(blocks_[c], size, size); |
| ConstVectorRef x_block(x + position, size); |
| VectorRef y_block(y + position, size); |
| y_block += D * x_block; |
| } |
| } |
| |
| void BlockJacobiPreconditioner::LeftMultiply(const double* x, double* y) const { |
| RightMultiply(x, y); |
| } |
| |
| } // namespace internal |
| } // namespace ceres |