| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/internal/eigen.h" |
| #include "ceres/low_rank_inverse_hessian.h" |
| #include "glog/logging.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| LowRankInverseHessian::LowRankInverseHessian(int num_parameters, |
| int max_num_corrections) |
| : num_parameters_(num_parameters), |
| max_num_corrections_(max_num_corrections), |
| num_corrections_(0), |
| diagonal_(1.0), |
| delta_x_history_(num_parameters, max_num_corrections), |
| delta_gradient_history_(num_parameters, max_num_corrections), |
| delta_x_dot_delta_gradient_(max_num_corrections) { |
| } |
| |
| bool LowRankInverseHessian::Update(const Vector& delta_x, |
| const Vector& delta_gradient) { |
| const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient); |
| if (delta_x_dot_delta_gradient <= 1e-10) { |
| VLOG(2) << "Skipping LBFGS Update. " << delta_x_dot_delta_gradient; |
| return false; |
| } |
| |
| if (num_corrections_ == max_num_corrections_) { |
| // TODO(sameeragarwal): This can be done more efficiently using |
| // a circular buffer/indexing scheme, but for simplicity we will |
| // do the expensive copy for now. |
| delta_x_history_.block(0, 0, num_parameters_, max_num_corrections_ - 2) = |
| delta_x_history_ |
| .block(0, 1, num_parameters_, max_num_corrections_ - 1); |
| |
| delta_gradient_history_ |
| .block(0, 0, num_parameters_, max_num_corrections_ - 2) = |
| delta_gradient_history_ |
| .block(0, 1, num_parameters_, max_num_corrections_ - 1); |
| |
| delta_x_dot_delta_gradient_.head(num_corrections_ - 2) = |
| delta_x_dot_delta_gradient_.tail(num_corrections_ - 1); |
| } else { |
| ++num_corrections_; |
| } |
| |
| delta_x_history_.col(num_corrections_ - 1) = delta_x; |
| delta_gradient_history_.col(num_corrections_ - 1) = delta_gradient; |
| delta_x_dot_delta_gradient_(num_corrections_ - 1) = |
| delta_x_dot_delta_gradient; |
| diagonal_ = delta_x_dot_delta_gradient / delta_gradient.squaredNorm(); |
| return true; |
| } |
| |
| void LowRankInverseHessian::RightMultiply(const double* x_ptr, |
| double* y_ptr) const { |
| ConstVectorRef gradient(x_ptr, num_parameters_); |
| VectorRef search_direction(y_ptr, num_parameters_); |
| |
| search_direction = gradient; |
| |
| Vector alpha(num_corrections_); |
| |
| for (int i = num_corrections_ - 1; i >= 0; --i) { |
| alpha(i) = delta_x_history_.col(i).dot(search_direction) / |
| delta_x_dot_delta_gradient_(i); |
| search_direction -= alpha(i) * delta_gradient_history_.col(i); |
| } |
| |
| search_direction *= diagonal_; |
| |
| for (int i = 0; i < num_corrections_; ++i) { |
| const double beta = delta_gradient_history_.col(i).dot(search_direction) / |
| delta_x_dot_delta_gradient_(i); |
| search_direction += delta_x_history_.col(i) * (alpha(i) - beta); |
| } |
| } |
| |
| } // namespace internal |
| } // namespace ceres |