| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| |
| syntax = "proto2"; |
| |
| package ceres.internal; |
| |
| message BlockProto { |
| // The span of the block. |
| optional int32 size = 1; |
| |
| // Position along the row or column (depending on storage orientation). |
| optional int32 position = 2; |
| } |
| |
| message CellProto { |
| // Column or row block id as appropriate. |
| optional int32 block_id = 1; |
| |
| // Position in the values array the cell is located. Each cell is stored as a |
| // row-major chunk inside the values array. |
| optional int32 position = 2; |
| } |
| |
| // A single row or column, depending on the matrix type. |
| message CompressedRowProto { |
| optional BlockProto block = 2; |
| repeated CellProto cells = 1; |
| } |
| |
| message BlockStructureProto { |
| repeated BlockProto cols = 1; |
| repeated CompressedRowProto rows = 2; |
| } |
| |
| // A block sparse matrix, either in column major or row major format. |
| message BlockSparseMatrixProto { |
| optional int64 num_rows = 2; |
| optional int64 num_cols = 3; |
| optional int64 num_nonzeros = 4; |
| repeated double values = 1 [packed=true]; |
| |
| optional BlockStructureProto block_structure = 5; |
| } |
| |
| message TripletSparseMatrixProto { |
| optional int64 num_rows = 4; |
| optional int64 num_cols = 5; |
| optional int64 num_nonzeros = 6; |
| |
| // The data is stored as three arrays. For each i, values(i) is stored at the |
| // location (rows(i), cols(i)). If the there are multiple entries with the |
| // same (rows(i), cols(i)), the values entries corresponding to them are |
| // summed up. |
| repeated int64 rows = 1 [packed=true]; |
| repeated int64 cols = 2 [packed=true]; |
| repeated double values = 3 [packed=true]; |
| } |
| |
| message CompressedRowSparseMatrixProto { |
| optional int64 num_rows = 4; |
| optional int64 num_cols = 5; |
| |
| repeated int64 rows = 1 [packed=true]; |
| repeated int64 cols = 2 [packed=true]; |
| repeated double values = 3 [packed=true]; |
| } |
| |
| message DenseSparseMatrixProto { |
| optional int64 num_rows = 1; |
| optional int64 num_cols = 2; |
| |
| // Entries are stored in row-major order. |
| repeated double values = 3 [packed=true]; |
| } |
| |
| // A sparse matrix. It is a union; only one field is permitted. If new sparse |
| // implementations are added, update this proto accordingly. |
| message SparseMatrixProto { |
| optional TripletSparseMatrixProto triplet_matrix = 1; |
| optional BlockSparseMatrixProto block_matrix = 2; |
| optional CompressedRowSparseMatrixProto compressed_row_matrix = 3; |
| optional DenseSparseMatrixProto dense_matrix = 4; |
| } |
| |
| // A linear least squares problem. |
| // |
| // Given a matrix A, an optional diagonal matrix D as a vector, and a vector b, |
| // the proto represents the following linear least squares problem. |
| // |
| // | A | x = | b | |
| // | D | | 0 | |
| // |
| // If D is empty, then the problem is considered to be |
| // |
| // A x = b |
| // |
| // The desired solution for the problem is the vector x that solves the |
| // following optimization problem: |
| // |
| // arg min_x ||Ax - b||^2 + ||Dx||^2 |
| // |
| // If x is present, then it is the expected solution to the |
| // problem. The dimensions of A, b, x, and D should be consistent. |
| message LinearLeastSquaresProblemProto { |
| optional SparseMatrixProto a = 1; |
| repeated double b = 2 [packed=true]; |
| repeated double d = 3 [packed=true]; |
| repeated double x = 4 [packed=true]; |
| // If the problem is of SfM type, i.e it has a generalized |
| // bi-partite structure, then num_eliminate_blocks is the number of |
| // column blocks that are to eliminated in the formation of the |
| // Schur complement. For more details see |
| // explicit_schur_complement_solver.h. |
| optional int32 num_eliminate_blocks = 5; |
| } |