blob: 55a01d2d3b76b98c9aa29aba709a306aca546083 [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
syntax = "proto2";
package ceres.internal;
message BlockProto {
// The span of the block.
optional int32 size = 1;
// Position along the row or column (depending on storage orientation).
optional int32 position = 2;
}
message CellProto {
// Column or row block id as appropriate.
optional int32 block_id = 1;
// Position in the values array the cell is located. Each cell is stored as a
// row-major chunk inside the values array.
optional int32 position = 2;
}
// A single row or column, depending on the matrix type.
message CompressedRowProto {
optional BlockProto block = 2;
repeated CellProto cells = 1;
}
message BlockStructureProto {
repeated BlockProto cols = 1;
repeated CompressedRowProto rows = 2;
}
// A block sparse matrix, either in column major or row major format.
message BlockSparseMatrixProto {
optional int64 num_rows = 2;
optional int64 num_cols = 3;
optional int64 num_nonzeros = 4;
repeated double values = 1 [packed=true];
optional BlockStructureProto block_structure = 5;
}
message TripletSparseMatrixProto {
optional int64 num_rows = 4;
optional int64 num_cols = 5;
optional int64 num_nonzeros = 6;
// The data is stored as three arrays. For each i, values(i) is stored at the
// location (rows(i), cols(i)). If the there are multiple entries with the
// same (rows(i), cols(i)), the values entries corresponding to them are
// summed up.
repeated int64 rows = 1 [packed=true];
repeated int64 cols = 2 [packed=true];
repeated double values = 3 [packed=true];
}
message CompressedRowSparseMatrixProto {
optional int64 num_rows = 4;
optional int64 num_cols = 5;
repeated int64 rows = 1 [packed=true];
repeated int64 cols = 2 [packed=true];
repeated double values = 3 [packed=true];
}
message DenseSparseMatrixProto {
optional int64 num_rows = 1;
optional int64 num_cols = 2;
// Entries are stored in row-major order.
repeated double values = 3 [packed=true];
}
// A sparse matrix. It is a union; only one field is permitted. If new sparse
// implementations are added, update this proto accordingly.
message SparseMatrixProto {
optional TripletSparseMatrixProto triplet_matrix = 1;
optional BlockSparseMatrixProto block_matrix = 2;
optional CompressedRowSparseMatrixProto compressed_row_matrix = 3;
optional DenseSparseMatrixProto dense_matrix = 4;
}
// A linear least squares problem.
//
// Given a matrix A, an optional diagonal matrix D as a vector, and a vector b,
// the proto represents the following linear least squares problem.
//
// | A | x = | b |
// | D | | 0 |
//
// If D is empty, then the problem is considered to be
//
// A x = b
//
// The desired solution for the problem is the vector x that solves the
// following optimization problem:
//
// arg min_x ||Ax - b||^2 + ||Dx||^2
//
// If x is present, then it is the expected solution to the
// problem. The dimensions of A, b, x, and D should be consistent.
message LinearLeastSquaresProblemProto {
optional SparseMatrixProto a = 1;
repeated double b = 2 [packed=true];
repeated double d = 3 [packed=true];
repeated double x = 4 [packed=true];
// If the problem is of SfM type, i.e it has a generalized
// bi-partite structure, then num_eliminate_blocks is the number of
// column blocks that are to eliminated in the formation of the
// Schur complement. For more details see
// explicit_schur_complement_solver.h.
optional int32 num_eliminate_blocks = 5;
}