| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_H_ |
| #define CERES_INTERNAL_SCHUR_ELIMINATOR_H_ |
| |
| #include <map> |
| #include <vector> |
| #include "ceres/mutex.h" |
| #include "ceres/block_random_access_matrix.h" |
| #include "ceres/block_sparse_matrix.h" |
| #include "ceres/block_structure.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/scoped_ptr.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| // Classes implementing the SchurEliminatorBase interface implement |
| // variable elimination for linear least squares problems. Assuming |
| // that the input linear system Ax = b can be partitioned into |
| // |
| // E y + F z = b |
| // |
| // Where x = [y;z] is a partition of the variables. The paritioning |
| // of the variables is such that, E'E is a block diagonal matrix. Or |
| // in other words, the parameter blocks in E form an independent set |
| // of the of the graph implied by the block matrix A'A. Then, this |
| // class provides the functionality to compute the Schur complement |
| // system |
| // |
| // S z = r |
| // |
| // where |
| // |
| // S = F'F - F'E (E'E)^{-1} E'F and r = F'b - F'E(E'E)^(-1) E'b |
| // |
| // This is the Eliminate operation, i.e., construct the linear system |
| // obtained by eliminating the variables in E. |
| // |
| // The eliminator also provides the reverse functionality, i.e. given |
| // values for z it can back substitute for the values of y, by solving the |
| // linear system |
| // |
| // Ey = b - F z |
| // |
| // which is done by observing that |
| // |
| // y = (E'E)^(-1) [E'b - E'F z] |
| // |
| // The eliminator has a number of requirements. |
| // |
| // The rows of A are ordered so that for every variable block in y, |
| // all the rows containing that variable block occur as a vertically |
| // contiguous block. i.e the matrix A looks like |
| // |
| // E F chunk |
| // A = [ y1 0 0 0 | z1 0 0 0 z5] 1 |
| // [ y1 0 0 0 | z1 z2 0 0 0] 1 |
| // [ 0 y2 0 0 | 0 0 z3 0 0] 2 |
| // [ 0 0 y3 0 | z1 z2 z3 z4 z5] 3 |
| // [ 0 0 y3 0 | z1 0 0 0 z5] 3 |
| // [ 0 0 0 y4 | 0 0 0 0 z5] 4 |
| // [ 0 0 0 y4 | 0 z2 0 0 0] 4 |
| // [ 0 0 0 y4 | 0 0 0 0 0] 4 |
| // [ 0 0 0 0 | z1 0 0 0 0] non chunk blocks |
| // [ 0 0 0 0 | 0 0 z3 z4 z5] non chunk blocks |
| // |
| // This structure should be reflected in the corresponding |
| // CompressedRowBlockStructure object associated with A. The linear |
| // system Ax = b should either be well posed or the array D below |
| // should be non-null and the diagonal matrix corresponding to it |
| // should be non-singular. For simplicity of exposition only the case |
| // with a null D is described. |
| // |
| // The usual way to do the elimination is as follows. Starting with |
| // |
| // E y + F z = b |
| // |
| // we can form the normal equations, |
| // |
| // E'E y + E'F z = E'b |
| // F'E y + F'F z = F'b |
| // |
| // multiplying both sides of the first equation by (E'E)^(-1) and then |
| // by F'E we get |
| // |
| // F'E y + F'E (E'E)^(-1) E'F z = F'E (E'E)^(-1) E'b |
| // F'E y + F'F z = F'b |
| // |
| // now subtracting the two equations we get |
| // |
| // [FF' - F'E (E'E)^(-1) E'F] z = F'b - F'E(E'E)^(-1) E'b |
| // |
| // Instead of forming the normal equations and operating on them as |
| // general sparse matrices, the algorithm here deals with one |
| // parameter block in y at a time. The rows corresponding to a single |
| // parameter block yi are known as a chunk, and the algorithm operates |
| // on one chunk at a time. The mathematics remains the same since the |
| // reduced linear system can be shown to be the sum of the reduced |
| // linear systems for each chunk. This can be seen by observing two |
| // things. |
| // |
| // 1. E'E is a block diagonal matrix. |
| // |
| // 2. When E'F is computed, only the terms within a single chunk |
| // interact, i.e for y1 column blocks when transposed and multiplied |
| // with F, the only non-zero contribution comes from the blocks in |
| // chunk1. |
| // |
| // Thus, the reduced linear system |
| // |
| // FF' - F'E (E'E)^(-1) E'F |
| // |
| // can be re-written as |
| // |
| // sum_k F_k F_k' - F_k'E_k (E_k'E_k)^(-1) E_k' F_k |
| // |
| // Where the sum is over chunks and E_k'E_k is dense matrix of size y1 |
| // x y1. |
| // |
| // Advanced usage. Uptil now it has been assumed that the user would |
| // be interested in all of the Schur Complement S. However, it is also |
| // possible to use this eliminator to obtain an arbitrary submatrix of |
| // the full Schur complement. When the eliminator is generating the |
| // blocks of S, it asks the RandomAccessBlockMatrix instance passed to |
| // it if it has storage for that block. If it does, the eliminator |
| // computes/updates it, if not it is skipped. This is useful when one |
| // is interested in constructing a preconditioner based on the Schur |
| // Complement, e.g., computing the block diagonal of S so that it can |
| // be used as a preconditioner for an Iterative Substructuring based |
| // solver [See Agarwal et al, Bundle Adjustment in the Large, ECCV |
| // 2008 for an example of such use]. |
| // |
| // Example usage: Please see schur_complement_solver.cc |
| class SchurEliminatorBase { |
| public: |
| virtual ~SchurEliminatorBase() {} |
| |
| // Initialize the eliminator. It is the user's responsibilty to call |
| // this function before calling Eliminate or BackSubstitute. It is |
| // also the caller's responsibilty to ensure that the |
| // CompressedRowBlockStructure object passed to this method is the |
| // same one (or is equivalent to) the one associated with the |
| // BlockSparseMatrix objects below. |
| virtual void Init(int num_eliminate_blocks, |
| const CompressedRowBlockStructure* bs) = 0; |
| |
| // Compute the Schur complement system from the augmented linear |
| // least squares problem [A;D] x = [b;0]. The left hand side and the |
| // right hand side of the reduced linear system are returned in lhs |
| // and rhs respectively. |
| // |
| // It is the caller's responsibility to construct and initialize |
| // lhs. Depending upon the structure of the lhs object passed here, |
| // the full or a submatrix of the Schur complement will be computed. |
| // |
| // Since the Schur complement is a symmetric matrix, only the upper |
| // triangular part of the Schur complement is computed. |
| virtual void Eliminate(const BlockSparseMatrix* A, |
| const double* b, |
| const double* D, |
| BlockRandomAccessMatrix* lhs, |
| double* rhs) = 0; |
| |
| // Given values for the variables z in the F block of A, solve for |
| // the optimal values of the variables y corresponding to the E |
| // block in A. |
| virtual void BackSubstitute(const BlockSparseMatrix* A, |
| const double* b, |
| const double* D, |
| const double* z, |
| double* y) = 0; |
| // Factory |
| static SchurEliminatorBase* Create(const LinearSolver::Options& options); |
| }; |
| |
| // Templated implementation of the SchurEliminatorBase interface. The |
| // templating is on the sizes of the row, e and f blocks sizes in the |
| // input matrix. In many problems, the sizes of one or more of these |
| // blocks are constant, in that case, its worth passing these |
| // parameters as template arguments so that they are visible to the |
| // compiler and can be used for compile time optimization of the low |
| // level linear algebra routines. |
| // |
| // This implementation is mulithreaded using OpenMP. The level of |
| // parallelism is controlled by LinearSolver::Options::num_threads. |
| template <int kRowBlockSize = Eigen::Dynamic, |
| int kEBlockSize = Eigen::Dynamic, |
| int kFBlockSize = Eigen::Dynamic > |
| class SchurEliminator : public SchurEliminatorBase { |
| public: |
| explicit SchurEliminator(const LinearSolver::Options& options) |
| : num_threads_(options.num_threads) { |
| } |
| |
| // SchurEliminatorBase Interface |
| virtual ~SchurEliminator(); |
| virtual void Init(int num_eliminate_blocks, |
| const CompressedRowBlockStructure* bs); |
| virtual void Eliminate(const BlockSparseMatrix* A, |
| const double* b, |
| const double* D, |
| BlockRandomAccessMatrix* lhs, |
| double* rhs); |
| virtual void BackSubstitute(const BlockSparseMatrix* A, |
| const double* b, |
| const double* D, |
| const double* z, |
| double* y); |
| |
| private: |
| // Chunk objects store combinatorial information needed to |
| // efficiently eliminate a whole chunk out of the least squares |
| // problem. Consider the first chunk in the example matrix above. |
| // |
| // [ y1 0 0 0 | z1 0 0 0 z5] |
| // [ y1 0 0 0 | z1 z2 0 0 0] |
| // |
| // One of the intermediate quantities that needs to be calculated is |
| // for each row the product of the y block transposed with the |
| // non-zero z block, and the sum of these blocks across rows. A |
| // temporary array "buffer_" is used for computing and storing them |
| // and the buffer_layout maps the indices of the z-blocks to |
| // position in the buffer_ array. The size of the chunk is the |
| // number of row blocks/residual blocks for the particular y block |
| // being considered. |
| // |
| // For the example chunk shown above, |
| // |
| // size = 2 |
| // |
| // The entries of buffer_layout will be filled in the following order. |
| // |
| // buffer_layout[z1] = 0 |
| // buffer_layout[z5] = y1 * z1 |
| // buffer_layout[z2] = y1 * z1 + y1 * z5 |
| typedef map<int, int> BufferLayoutType; |
| struct Chunk { |
| Chunk() : size(0) {} |
| int size; |
| int start; |
| BufferLayoutType buffer_layout; |
| }; |
| |
| void ChunkDiagonalBlockAndGradient( |
| const Chunk& chunk, |
| const BlockSparseMatrix* A, |
| const double* b, |
| int row_block_counter, |
| typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix* eet, |
| double* g, |
| double* buffer, |
| BlockRandomAccessMatrix* lhs); |
| |
| void UpdateRhs(const Chunk& chunk, |
| const BlockSparseMatrix* A, |
| const double* b, |
| int row_block_counter, |
| const double* inverse_ete_g, |
| double* rhs); |
| |
| void ChunkOuterProduct(const CompressedRowBlockStructure* bs, |
| const Matrix& inverse_eet, |
| const double* buffer, |
| const BufferLayoutType& buffer_layout, |
| BlockRandomAccessMatrix* lhs); |
| void EBlockRowOuterProduct(const BlockSparseMatrix* A, |
| int row_block_index, |
| BlockRandomAccessMatrix* lhs); |
| |
| |
| void NoEBlockRowsUpdate(const BlockSparseMatrix* A, |
| const double* b, |
| int row_block_counter, |
| BlockRandomAccessMatrix* lhs, |
| double* rhs); |
| |
| void NoEBlockRowOuterProduct(const BlockSparseMatrix* A, |
| int row_block_index, |
| BlockRandomAccessMatrix* lhs); |
| |
| int num_eliminate_blocks_; |
| |
| // Block layout of the columns of the reduced linear system. Since |
| // the f blocks can be of varying size, this vector stores the |
| // position of each f block in the row/col of the reduced linear |
| // system. Thus lhs_row_layout_[i] is the row/col position of the |
| // i^th f block. |
| vector<int> lhs_row_layout_; |
| |
| // Combinatorial structure of the chunks in A. For more information |
| // see the documentation of the Chunk object above. |
| vector<Chunk> chunks_; |
| |
| // TODO(sameeragarwal): The following two arrays contain per-thread |
| // storage. They should be refactored into a per thread struct. |
| |
| // Buffer to store the products of the y and z blocks generated |
| // during the elimination phase. buffer_ is of size num_threads * |
| // buffer_size_. Each thread accesses the chunk |
| // |
| // [thread_id * buffer_size_ , (thread_id + 1) * buffer_size_] |
| // |
| scoped_array<double> buffer_; |
| |
| // Buffer to store per thread matrix matrix products used by |
| // ChunkOuterProduct. Like buffer_ it is of size num_threads * |
| // buffer_size_. Each thread accesses the chunk |
| // |
| // [thread_id * buffer_size_ , (thread_id + 1) * buffer_size_ -1] |
| // |
| scoped_array<double> chunk_outer_product_buffer_; |
| |
| int buffer_size_; |
| int num_threads_; |
| int uneliminated_row_begins_; |
| |
| // Locks for the blocks in the right hand side of the reduced linear |
| // system. |
| vector<Mutex*> rhs_locks_; |
| }; |
| |
| } // namespace internal |
| } // namespace ceres |
| |
| #endif // CERES_INTERNAL_SCHUR_ELIMINATOR_H_ |