| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. |
| // http://code.google.com/p/ceres-solver/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: keir@google.com (Keir Mierle) |
| // sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // System level tests for Ceres. The current suite of two tests. The |
| // first test is a small test based on Powell's Function. It is a |
| // scalar problem with 4 variables. The second problem is a bundle |
| // adjustment problem with 16 cameras and two thousand cameras. The |
| // first problem is to test the sanity test the factorization based |
| // solvers. The second problem is used to test the various |
| // combinations of solvers, orderings, preconditioners and |
| // multithreading. |
| |
| #include <cmath> |
| #include <cstdio> |
| #include <cstdlib> |
| #include <string> |
| |
| #include "ceres/autodiff_cost_function.h" |
| #include "ceres/ordered_groups.h" |
| #include "ceres/problem.h" |
| #include "ceres/rotation.h" |
| #include "ceres/solver.h" |
| #include "ceres/stringprintf.h" |
| #include "ceres/test_util.h" |
| #include "ceres/types.h" |
| #include "gflags/gflags.h" |
| #include "glog/logging.h" |
| #include "gtest/gtest.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| const bool kAutomaticOrdering = true; |
| const bool kUserOrdering = false; |
| |
| // Struct used for configuring the solver. |
| struct SolverConfig { |
| SolverConfig(LinearSolverType linear_solver_type, |
| SparseLinearAlgebraLibraryType sparse_linear_algebra_library, |
| bool use_automatic_ordering) |
| : linear_solver_type(linear_solver_type), |
| sparse_linear_algebra_library(sparse_linear_algebra_library), |
| use_automatic_ordering(use_automatic_ordering), |
| preconditioner_type(IDENTITY), |
| num_threads(1) { |
| } |
| |
| SolverConfig(LinearSolverType linear_solver_type, |
| SparseLinearAlgebraLibraryType sparse_linear_algebra_library, |
| bool use_automatic_ordering, |
| PreconditionerType preconditioner_type) |
| : linear_solver_type(linear_solver_type), |
| sparse_linear_algebra_library(sparse_linear_algebra_library), |
| use_automatic_ordering(use_automatic_ordering), |
| preconditioner_type(preconditioner_type), |
| num_threads(1) { |
| } |
| |
| string ToString() const { |
| return StringPrintf( |
| "(%s, %s, %s, %s, %d)", |
| LinearSolverTypeToString(linear_solver_type), |
| SparseLinearAlgebraLibraryTypeToString(sparse_linear_algebra_library), |
| use_automatic_ordering ? "AUTOMATIC" : "USER", |
| PreconditionerTypeToString(preconditioner_type), |
| num_threads); |
| } |
| |
| LinearSolverType linear_solver_type; |
| SparseLinearAlgebraLibraryType sparse_linear_algebra_library; |
| bool use_automatic_ordering; |
| PreconditionerType preconditioner_type; |
| int num_threads; |
| }; |
| |
| // Templated function that given a set of solver configurations, |
| // instantiates a new copy of SystemTestProblem for each configuration |
| // and solves it. The solutions are expected to have residuals with |
| // coordinate-wise maximum absolute difference less than or equal to |
| // max_abs_difference. |
| // |
| // The template parameter SystemTestProblem is expected to implement |
| // the following interface. |
| // |
| // class SystemTestProblem { |
| // public: |
| // SystemTestProblem(); |
| // Problem* mutable_problem(); |
| // Solver::Options* mutable_solver_options(); |
| // }; |
| template <typename SystemTestProblem> |
| void RunSolversAndCheckTheyMatch(const vector<SolverConfig>& configurations, |
| const double max_abs_difference) { |
| int num_configurations = configurations.size(); |
| vector<SystemTestProblem*> problems; |
| vector<vector<double> > final_residuals(num_configurations); |
| |
| for (int i = 0; i < num_configurations; ++i) { |
| SystemTestProblem* system_test_problem = new SystemTestProblem(); |
| |
| const SolverConfig& config = configurations[i]; |
| |
| Solver::Options& options = *(system_test_problem->mutable_solver_options()); |
| options.linear_solver_type = config.linear_solver_type; |
| options.sparse_linear_algebra_library = |
| config.sparse_linear_algebra_library; |
| options.preconditioner_type = config.preconditioner_type; |
| options.num_threads = config.num_threads; |
| options.num_linear_solver_threads = config.num_threads; |
| |
| if (config.use_automatic_ordering) { |
| delete options.linear_solver_ordering; |
| options.linear_solver_ordering = NULL; |
| } |
| |
| LOG(INFO) << "Running solver configuration: " |
| << config.ToString(); |
| |
| Solver::Summary summary; |
| Solve(options, |
| system_test_problem->mutable_problem(), |
| &summary); |
| |
| system_test_problem |
| ->mutable_problem() |
| ->Evaluate(Problem::EvaluateOptions(), |
| NULL, |
| &final_residuals[i], |
| NULL, |
| NULL); |
| |
| CHECK_NE(summary.termination_type, ceres::NUMERICAL_FAILURE) |
| << "Solver configuration " << i << " failed."; |
| problems.push_back(system_test_problem); |
| |
| // Compare the resulting solutions to each other. Arbitrarily take |
| // SPARSE_NORMAL_CHOLESKY as the golden solve. We compare |
| // solutions by comparing their residual vectors. We do not |
| // compare parameter vectors because it is much more brittle and |
| // error prone to do so, since the same problem can have nearly |
| // the same residuals at two completely different positions in |
| // parameter space. |
| if (i > 0) { |
| const vector<double>& reference_residuals = final_residuals[0]; |
| const vector<double>& current_residuals = final_residuals[i]; |
| |
| for (int j = 0; j < reference_residuals.size(); ++j) { |
| EXPECT_NEAR(current_residuals[j], |
| reference_residuals[j], |
| max_abs_difference) |
| << "Not close enough residual:" << j |
| << " reference " << reference_residuals[j] |
| << " current " << current_residuals[j]; |
| } |
| } |
| } |
| |
| for (int i = 0; i < num_configurations; ++i) { |
| delete problems[i]; |
| } |
| } |
| |
| // This class implements the SystemTestProblem interface and provides |
| // access to an implementation of Powell's singular function. |
| // |
| // F = 1/2 (f1^2 + f2^2 + f3^2 + f4^2) |
| // |
| // f1 = x1 + 10*x2; |
| // f2 = sqrt(5) * (x3 - x4) |
| // f3 = (x2 - 2*x3)^2 |
| // f4 = sqrt(10) * (x1 - x4)^2 |
| // |
| // The starting values are x1 = 3, x2 = -1, x3 = 0, x4 = 1. |
| // The minimum is 0 at (x1, x2, x3, x4) = 0. |
| // |
| // From: Testing Unconstrained Optimization Software by Jorge J. More, Burton S. |
| // Garbow and Kenneth E. Hillstrom in ACM Transactions on Mathematical Software, |
| // Vol 7(1), March 1981. |
| class PowellsFunction { |
| public: |
| PowellsFunction() { |
| x_[0] = 3.0; |
| x_[1] = -1.0; |
| x_[2] = 0.0; |
| x_[3] = 1.0; |
| |
| problem_.AddResidualBlock( |
| new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), NULL, &x_[0], &x_[1]); |
| problem_.AddResidualBlock( |
| new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), NULL, &x_[2], &x_[3]); |
| problem_.AddResidualBlock( |
| new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), NULL, &x_[1], &x_[2]); |
| problem_.AddResidualBlock( |
| new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), NULL, &x_[0], &x_[3]); |
| |
| options_.max_num_iterations = 10; |
| } |
| |
| Problem* mutable_problem() { return &problem_; } |
| Solver::Options* mutable_solver_options() { return &options_; } |
| |
| private: |
| // Templated functions used for automatically differentiated cost |
| // functions. |
| class F1 { |
| public: |
| template <typename T> bool operator()(const T* const x1, |
| const T* const x2, |
| T* residual) const { |
| // f1 = x1 + 10 * x2; |
| *residual = *x1 + T(10.0) * *x2; |
| return true; |
| } |
| }; |
| |
| class F2 { |
| public: |
| template <typename T> bool operator()(const T* const x3, |
| const T* const x4, |
| T* residual) const { |
| // f2 = sqrt(5) (x3 - x4) |
| *residual = T(sqrt(5.0)) * (*x3 - *x4); |
| return true; |
| } |
| }; |
| |
| class F3 { |
| public: |
| template <typename T> bool operator()(const T* const x2, |
| const T* const x4, |
| T* residual) const { |
| // f3 = (x2 - 2 x3)^2 |
| residual[0] = (x2[0] - T(2.0) * x4[0]) * (x2[0] - T(2.0) * x4[0]); |
| return true; |
| } |
| }; |
| |
| class F4 { |
| public: |
| template <typename T> bool operator()(const T* const x1, |
| const T* const x4, |
| T* residual) const { |
| // f4 = sqrt(10) (x1 - x4)^2 |
| residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]); |
| return true; |
| } |
| }; |
| |
| double x_[4]; |
| Problem problem_; |
| Solver::Options options_; |
| }; |
| |
| TEST(SystemTest, PowellsFunction) { |
| vector<SolverConfig> configs; |
| #define CONFIGURE(linear_solver, sparse_linear_algebra_library, ordering) \ |
| configs.push_back(SolverConfig(linear_solver, \ |
| sparse_linear_algebra_library, \ |
| ordering)) |
| |
| CONFIGURE(DENSE_QR, SUITE_SPARSE, kAutomaticOrdering); |
| CONFIGURE(DENSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering); |
| CONFIGURE(DENSE_SCHUR, SUITE_SPARSE, kAutomaticOrdering); |
| |
| #ifndef CERES_NO_SUITESPARSE |
| CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering); |
| #endif // CERES_NO_SUITESPARSE |
| |
| #ifndef CERES_NO_CXSPARSE |
| CONFIGURE(SPARSE_NORMAL_CHOLESKY, CX_SPARSE, kAutomaticOrdering); |
| #endif // CERES_NO_CXSPARSE |
| |
| CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering); |
| |
| #undef CONFIGURE |
| |
| const double kMaxAbsoluteDifference = 1e-8; |
| RunSolversAndCheckTheyMatch<PowellsFunction>(configs, kMaxAbsoluteDifference); |
| } |
| |
| // This class implements the SystemTestProblem interface and provides |
| // access to a bundle adjustment problem. It is based on |
| // examples/bundle_adjustment_example.cc. Currently a small 16 camera |
| // problem is hard coded in the constructor. Going forward we may |
| // extend this to a larger number of problems. |
| class BundleAdjustmentProblem { |
| public: |
| BundleAdjustmentProblem() { |
| const string input_file = TestFileAbsolutePath("problem-16-22106-pre.txt"); |
| ReadData(input_file); |
| BuildProblem(); |
| } |
| |
| ~BundleAdjustmentProblem() { |
| delete []point_index_; |
| delete []camera_index_; |
| delete []observations_; |
| delete []parameters_; |
| } |
| |
| Problem* mutable_problem() { return &problem_; } |
| Solver::Options* mutable_solver_options() { return &options_; } |
| |
| int num_cameras() const { return num_cameras_; } |
| int num_points() const { return num_points_; } |
| int num_observations() const { return num_observations_; } |
| const int* point_index() const { return point_index_; } |
| const int* camera_index() const { return camera_index_; } |
| const double* observations() const { return observations_; } |
| double* mutable_cameras() { return parameters_; } |
| double* mutable_points() { return parameters_ + 9 * num_cameras_; } |
| |
| private: |
| void ReadData(const string& filename) { |
| FILE * fptr = fopen(filename.c_str(), "r"); |
| |
| if (!fptr) { |
| LOG(FATAL) << "File Error: unable to open file " << filename; |
| }; |
| |
| // This will die horribly on invalid files. Them's the breaks. |
| FscanfOrDie(fptr, "%d", &num_cameras_); |
| FscanfOrDie(fptr, "%d", &num_points_); |
| FscanfOrDie(fptr, "%d", &num_observations_); |
| |
| VLOG(1) << "Header: " << num_cameras_ |
| << " " << num_points_ |
| << " " << num_observations_; |
| |
| point_index_ = new int[num_observations_]; |
| camera_index_ = new int[num_observations_]; |
| observations_ = new double[2 * num_observations_]; |
| |
| num_parameters_ = 9 * num_cameras_ + 3 * num_points_; |
| parameters_ = new double[num_parameters_]; |
| |
| for (int i = 0; i < num_observations_; ++i) { |
| FscanfOrDie(fptr, "%d", camera_index_ + i); |
| FscanfOrDie(fptr, "%d", point_index_ + i); |
| for (int j = 0; j < 2; ++j) { |
| FscanfOrDie(fptr, "%lf", observations_ + 2*i + j); |
| } |
| } |
| |
| for (int i = 0; i < num_parameters_; ++i) { |
| FscanfOrDie(fptr, "%lf", parameters_ + i); |
| } |
| } |
| |
| void BuildProblem() { |
| double* points = mutable_points(); |
| double* cameras = mutable_cameras(); |
| |
| for (int i = 0; i < num_observations(); ++i) { |
| // Each Residual block takes a point and a camera as input and |
| // outputs a 2 dimensional residual. |
| CostFunction* cost_function = |
| new AutoDiffCostFunction<BundlerResidual, 2, 9, 3>( |
| new BundlerResidual(observations_[2*i + 0], |
| observations_[2*i + 1])); |
| |
| // Each observation correponds to a pair of a camera and a point |
| // which are identified by camera_index()[i] and |
| // point_index()[i] respectively. |
| double* camera = cameras + 9 * camera_index_[i]; |
| double* point = points + 3 * point_index()[i]; |
| problem_.AddResidualBlock(cost_function, NULL, camera, point); |
| } |
| |
| options_.linear_solver_ordering = new ParameterBlockOrdering; |
| |
| // The points come before the cameras. |
| for (int i = 0; i < num_points_; ++i) { |
| options_.linear_solver_ordering->AddElementToGroup(points + 3 * i, 0); |
| } |
| |
| for (int i = 0; i < num_cameras_; ++i) { |
| options_.linear_solver_ordering->AddElementToGroup(cameras + 9 * i, 1); |
| } |
| |
| options_.max_num_iterations = 25; |
| options_.function_tolerance = 1e-10; |
| options_.gradient_tolerance = 1e-10; |
| options_.parameter_tolerance = 1e-10; |
| } |
| |
| template<typename T> |
| void FscanfOrDie(FILE *fptr, const char *format, T *value) { |
| int num_scanned = fscanf(fptr, format, value); |
| if (num_scanned != 1) { |
| LOG(FATAL) << "Invalid UW data file."; |
| } |
| } |
| |
| // Templated pinhole camera model. The camera is parameterized |
| // using 9 parameters. 3 for rotation, 3 for translation, 1 for |
| // focal length and 2 for radial distortion. The principal point is |
| // not modeled (i.e. it is assumed be located at the image center). |
| struct BundlerResidual { |
| // (u, v): the position of the observation with respect to the image |
| // center point. |
| BundlerResidual(double u, double v): u(u), v(v) {} |
| |
| template <typename T> |
| bool operator()(const T* const camera, |
| const T* const point, |
| T* residuals) const { |
| T p[3]; |
| AngleAxisRotatePoint(camera, point, p); |
| |
| // Add the translation vector |
| p[0] += camera[3]; |
| p[1] += camera[4]; |
| p[2] += camera[5]; |
| |
| const T& focal = camera[6]; |
| const T& l1 = camera[7]; |
| const T& l2 = camera[8]; |
| |
| // Compute the center of distortion. The sign change comes from |
| // the camera model that Noah Snavely's Bundler assumes, whereby |
| // the camera coordinate system has a negative z axis. |
| T xp = - focal * p[0] / p[2]; |
| T yp = - focal * p[1] / p[2]; |
| |
| // Apply second and fourth order radial distortion. |
| T r2 = xp*xp + yp*yp; |
| T distortion = T(1.0) + r2 * (l1 + l2 * r2); |
| |
| residuals[0] = distortion * xp - T(u); |
| residuals[1] = distortion * yp - T(v); |
| |
| return true; |
| } |
| |
| double u; |
| double v; |
| }; |
| |
| |
| Problem problem_; |
| Solver::Options options_; |
| |
| int num_cameras_; |
| int num_points_; |
| int num_observations_; |
| int num_parameters_; |
| |
| int* point_index_; |
| int* camera_index_; |
| double* observations_; |
| // The parameter vector is laid out as follows |
| // [camera_1, ..., camera_n, point_1, ..., point_m] |
| double* parameters_; |
| }; |
| |
| TEST(SystemTest, BundleAdjustmentProblem) { |
| vector<SolverConfig> configs; |
| |
| #define CONFIGURE(linear_solver, sparse_linear_algebra_library, ordering, preconditioner) \ |
| configs.push_back(SolverConfig(linear_solver, \ |
| sparse_linear_algebra_library, \ |
| ordering, \ |
| preconditioner)) |
| |
| #ifndef CERES_NO_SUITESPARSE |
| CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering, IDENTITY); |
| CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kUserOrdering, IDENTITY); |
| |
| CONFIGURE(SPARSE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, IDENTITY); |
| CONFIGURE(SPARSE_SCHUR, SUITE_SPARSE, kUserOrdering, IDENTITY); |
| #endif // CERES_NO_SUITESPARSE |
| |
| #ifndef CERES_NO_CXSPARSE |
| CONFIGURE(SPARSE_SCHUR, CX_SPARSE, kAutomaticOrdering, IDENTITY); |
| CONFIGURE(SPARSE_SCHUR, CX_SPARSE, kUserOrdering, IDENTITY); |
| #endif // CERES_NO_CXSPARSE |
| |
| CONFIGURE(DENSE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, IDENTITY); |
| CONFIGURE(DENSE_SCHUR, SUITE_SPARSE, kUserOrdering, IDENTITY); |
| |
| CONFIGURE(CGNR, SUITE_SPARSE, kAutomaticOrdering, JACOBI); |
| CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kUserOrdering, JACOBI); |
| CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kUserOrdering, SCHUR_JACOBI); |
| |
| #ifndef CERES_NO_SUITESPARSE |
| |
| CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kUserOrdering, CLUSTER_JACOBI); |
| CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kUserOrdering, CLUSTER_TRIDIAGONAL); |
| #endif // CERES_NO_SUITESPARSE |
| |
| CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, JACOBI); |
| CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, SCHUR_JACOBI); |
| |
| #ifndef CERES_NO_SUITESPARSE |
| |
| CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, CLUSTER_JACOBI); |
| CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, CLUSTER_TRIDIAGONAL); |
| #endif // CERES_NO_SUITESPARSE |
| |
| #undef CONFIGURE |
| |
| // Single threaded evaluators and linear solvers. |
| const double kMaxAbsoluteDifference = 1e-4; |
| RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs, |
| kMaxAbsoluteDifference); |
| |
| #ifdef CERES_USE_OPENMP |
| // Multithreaded evaluators and linear solvers. |
| for (int i = 0; i < configs.size(); ++i) { |
| configs[i].num_threads = 2; |
| } |
| RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs, |
| kMaxAbsoluteDifference); |
| #endif // CERES_USE_OPENMP |
| } |
| |
| } // namespace internal |
| } // namespace ceres |