| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) |
| |
| #ifndef CERES_INTERNAL_CUDA_BLOCK_STRUCTURE_H_ |
| #define CERES_INTERNAL_CUDA_BLOCK_STRUCTURE_H_ |
| |
| #include "ceres/internal/config.h" |
| |
| #ifndef CERES_NO_CUDA |
| |
| #include "ceres/block_structure.h" |
| #include "ceres/cuda_buffer.h" |
| |
| namespace ceres::internal { |
| class CudaBlockStructureTest; |
| |
| // This class stores a read-only block-sparse structure in gpu memory. |
| // Invariants are the same as those of CompressedRowBlockStructure. |
| // In order to simplify allocation and copying data to gpu, cells from all |
| // row-blocks are stored in a single array sequentially. Array |
| // first_cell_in_row_block of size num_row_blocks + 1 allows to identify range |
| // of cells corresponding to a row-block. Cells corresponding to i-th row-block |
| // are stored in sub-array cells[first_cell_in_row_block[i]; ... |
| // first_cell_in_row_block[i + 1] - 1], and their order is preserved. |
| class CERES_NO_EXPORT CudaBlockSparseStructure { |
| public: |
| // CompressedRowBlockStructure is contains a vector of CompressedLists, with |
| // each CompressedList containing a vector of Cells. We precompute a flat |
| // array of cells on cpu and transfer it to the gpu. |
| CudaBlockSparseStructure(const CompressedRowBlockStructure& block_structure, |
| ContextImpl* context); |
| // In the case of partitioned matrices, number of non-zeros in E and layout of |
| // F are computed |
| CudaBlockSparseStructure(const CompressedRowBlockStructure& block_structure, |
| const int num_col_blocks_e, |
| ContextImpl* context); |
| |
| int num_rows() const { return num_rows_; } |
| int num_cols() const { return num_cols_; } |
| int num_cells() const { return num_cells_; } |
| int num_nonzeros() const { return num_nonzeros_; } |
| // When partitioned matrix constructor was used, returns number of non-zeros |
| // in E sub-matrix |
| int num_nonzeros_e() const { return num_nonzeros_e_; } |
| int num_row_blocks() const { return num_row_blocks_; } |
| int num_row_blocks_e() const { return num_row_blocks_e_; } |
| int num_col_blocks() const { return num_col_blocks_; } |
| |
| // Returns true if values from block-sparse matrix (F sub-matrix in |
| // partitioned case) can be copied to CRS matrix as-is. This is possible if |
| // each row-block is stored in CRS order: |
| // - Row-block consists of a single row |
| // - Row-block contains a single cell |
| bool IsCrsCompatible() const { return is_crs_compatible_; } |
| |
| // Device pointer to array of num_row_blocks + 1 indices of the first cell of |
| // row block |
| const int* first_cell_in_row_block() const { |
| return first_cell_in_row_block_.data(); |
| } |
| // Device pointer to array of num_row_blocks + 1 indices of the first value in |
| // this or subsequent row-blocks of submatrix F |
| const int* value_offset_row_block_f() const { |
| return value_offset_row_block_f_.data(); |
| } |
| // Device pointer to array of num_cells cells, sorted by row-block |
| const Cell* cells() const { return cells_.data(); } |
| // Device pointer to array of row blocks |
| const Block* row_blocks() const { return row_blocks_.data(); } |
| // Device pointer to array of column blocks |
| const Block* col_blocks() const { return col_blocks_.data(); } |
| |
| private: |
| int num_rows_; |
| int num_cols_; |
| int num_cells_; |
| int num_nonzeros_; |
| int num_nonzeros_e_; |
| int num_row_blocks_; |
| int num_row_blocks_e_; |
| int num_col_blocks_; |
| bool is_crs_compatible_; |
| CudaBuffer<int> first_cell_in_row_block_; |
| CudaBuffer<int> value_offset_row_block_f_; |
| CudaBuffer<Cell> cells_; |
| CudaBuffer<Block> row_blocks_; |
| CudaBuffer<Block> col_blocks_; |
| friend class CudaBlockStructureTest; |
| }; |
| } // namespace ceres::internal |
| |
| #endif // CERES_NO_CUDA |
| #endif // CERES_INTERNAL_CUDA_BLOCK_SPARSE_STRUCTURE_H_ |