| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin) |
| |
| #ifndef CERES_INTERNAL_CUDA_STREAMED_BUFFER_H_ |
| #define CERES_INTERNAL_CUDA_STREAMED_BUFFER_H_ |
| |
| #include "ceres/internal/config.h" |
| |
| #ifndef CERES_NO_CUDA |
| |
| #include <algorithm> |
| |
| #include "ceres/cuda_buffer.h" |
| |
| namespace ceres::internal { |
| |
| // Most contemporary CUDA devices are capable of simultaneous code execution and |
| // host-to-device transfer. This class copies batches of data to GPU memory and |
| // executes processing of copied data in parallel (asynchronously). |
| // Data is copied to a fixed-size buffer on GPU (containing at most |
| // max_buffer_size values), and this memory is re-used when the previous |
| // batch of values is processed by user-provided callback |
| // Host-to-device copy uses a temporary buffer if required. Each batch of values |
| // has size of kValuesPerBatch, except the last one. |
| template <typename T> |
| class CERES_NO_EXPORT CudaStreamedBuffer { |
| public: |
| // If hardware supports only one host-to-device copy or one host-to-device |
| // copy is able to reach peak bandwidth, two streams are sufficient to reach |
| // maximum efficiency: |
| // - If transferring batch of values takes more time, than processing it on |
| // gpu, then at every moment of time one of the streams will be transferring |
| // data and other stream will be either processing data or idle; the whole |
| // process will be bounded by host-to-device copy. |
| // - If transferring batch of values takes less time, than processing it on |
| // gpu, then at every moment of time one of the streams will be processing |
| // data and other stream will be either performing computations or |
| // transferring data, and the whole process will be bounded by computations. |
| static constexpr int kNumBatches = 2; |
| // max_buffer_size is the maximal size (in elements of type T) of array |
| // to be pre-allocated in gpu memory. The size of array determines size of |
| // batch of values for simultaneous copying and processing. It should be large |
| // enough to allow highly-parallel execution of user kernels; making it too |
| // large increases latency. |
| CudaStreamedBuffer(ContextImpl* context, const int max_buffer_size) |
| : kValuesPerBatch(max_buffer_size / kNumBatches), |
| context_(context), |
| values_gpu_(context, kValuesPerBatch * kNumBatches) { |
| static_assert(ContextImpl::kNumCudaStreams >= kNumBatches); |
| CHECK_GE(max_buffer_size, kNumBatches); |
| // Pre-allocate a buffer of page-locked memory for transfers from a regular |
| // cpu memory. Because we will be only writing into that buffer from cpu, |
| // memory is allocated with cudaHostAllocWriteCombined flag. |
| CHECK_EQ(cudaSuccess, |
| cudaHostAlloc(&values_cpu_pinned_, |
| sizeof(T) * kValuesPerBatch * kNumBatches, |
| cudaHostAllocWriteCombined)); |
| for (auto& e : copy_finished_) { |
| CHECK_EQ(cudaSuccess, |
| cudaEventCreateWithFlags(&e, cudaEventDisableTiming)); |
| } |
| } |
| |
| CudaStreamedBuffer(const CudaStreamedBuffer&) = delete; |
| |
| ~CudaStreamedBuffer() { |
| CHECK_EQ(cudaSuccess, cudaFreeHost(values_cpu_pinned_)); |
| for (auto& e : copy_finished_) { |
| CHECK_EQ(cudaSuccess, cudaEventDestroy(e)); |
| } |
| } |
| |
| // Transfer num_values at host-memory pointer from, calling |
| // callback(device_pointer, size_of_batch, offset_of_batch, stream_to_use) |
| // after scheduling transfer of each batch of data. User-provided callback |
| // should perform processing of data at device_pointer only in |
| // stream_to_use stream (device_pointer will be re-used in the next |
| // callback invocation with the same stream). |
| // |
| // Two diagrams below describe operation in two possible scenarios, depending |
| // on input data being stored in page-locked memory. In this example we will |
| // have max_buffer_size = 2 * K, num_values = N * K and callback |
| // scheduling a single asynchronous launch of |
| // Kernel<<..., stream_to_use>>(device_pointer, |
| // size_of_batch, |
| // offset_of_batch) |
| // |
| // a. Copying from page-locked memory |
| // In this case no copy on the host-side is necessary, and this method just |
| // schedules a bunch of interleaved memory copies and callback invocations: |
| // |
| // cudaStreamSynchronize(context->DefaultStream()); |
| // - Iteration #0: |
| // - cudaMemcpyAsync(values_gpu_, from, K * sizeof(T), H->D, stream_0) |
| // - callback(values_gpu_, K, 0, stream_0) |
| // - Iteration #1: |
| // - cudaMemcpyAsync(values_gpu_ + K, from + K, K * sizeof(T), H->D, |
| // stream_1) |
| // - callback(values_gpu_ + K, K, K, stream_1) |
| // - Iteration #2: |
| // - cudaMemcpyAsync(values_gpu_, from + 2 * K, K * sizeof(T), H->D, |
| // stream_0) |
| // - callback(values_gpu_, K, 2 * K, stream_0) |
| // - Iteration #3: |
| // - cudaMemcpyAsync(values_gpu_ + K, from + 3 * K, K * sizeof(T), H->D, |
| // stream_1) |
| // - callback(values_gpu_ + K, K, 3 * K, stream_1) |
| // ... |
| // - Iteration #i: |
| // - cudaMemcpyAsync(values_gpu_ + (i % 2) * K, from + i * K, K * |
| // sizeof(T), H->D, stream_(i % 2)) |
| // - callback(values_gpu_ + (i % 2) * K, K, i * K, stream_(i % 2) |
| // ... |
| // cudaStreamSynchronize(stream_0) |
| // cudaStreamSynchronize(stream_1) |
| // |
| // This sequence of calls results in following activity on gpu (assuming that |
| // kernel invoked by callback takes less time than host-to-device copy): |
| // +-------------------+-------------------+ |
| // | Stream #0 | Stream #1 | |
| // +-------------------+-------------------+ |
| // | Copy host->device | | |
| // | | | |
| // | | | |
| // +-------------------+-------------------+ |
| // | Kernel | Copy host->device | |
| // +-------------------+ | |
| // | | | |
| // +-------------------+-------------------+ |
| // | Copy host->device | Kernel | |
| // | +-------------------+ |
| // | | | |
| // +-------------------+-------------------+ |
| // | Kernel | Copy host->device | |
| // | ... | |
| // +---------------------------------------+ |
| // |
| // b. Copying from regular memory |
| // In this case a copy from regular memory to page-locked memory is required |
| // in order to get asynchrnonous operation. Because pinned memory on host-side |
| // is reused, additional synchronization is required. On each iteration method |
| // the following actions are performed: |
| // - Wait till previous copy operation in stream is completed |
| // - Copy batch of values from input array into pinned memory |
| // - Asynchronously launch host-to-device copy |
| // - Setup event for synchronization on copy completion |
| // - Invoke callback (that launches kernel asynchronously) |
| // |
| // Invocations are performed with the following arguments |
| // cudaStreamSynchronize(context->DefaultStream()); |
| // - Iteration #0: |
| // - cudaEventSynchronize(copy_finished_0) |
| // - std::copy_n(from, K, values_cpu_pinned_) |
| // - cudaMemcpyAsync(values_gpu_, values_cpu_pinned_, K * sizeof(T), H->D, |
| // stream_0) |
| // - cudaEventRecord(copy_finished_0, stream_0) |
| // - callback(values_gpu_, K, 0, stream_0) |
| // - Iteration #1: |
| // - cudaEventSynchronize(copy_finished_1) |
| // - std::copy_n(from + K, K, values_cpu_pinned_ + K) |
| // - cudaMemcpyAsync(values_gpu_ + K, values_cpu_pinned_ + K, K * |
| // sizeof(T), H->D, stream_1) |
| // - cudaEventRecord(copy_finished_1, stream_1) |
| // - callback(values_gpu_ + K, K, K, stream_1) |
| // - Iteration #2: |
| // - cudaEventSynchronize(copy_finished_0) |
| // - std::copy_n(from + 2 * K, K, values_cpu_pinned_) |
| // - cudaMemcpyAsync(values_gpu_, values_cpu_pinned_, K * sizeof(T), H->D, |
| // stream_0) |
| // - cudaEventRecord(copy_finished_0, stream_0) |
| // - callback(values_gpu_, K, 2 * K, stream_0) |
| // - Iteration #3: |
| // - cudaEventSynchronize(copy_finished_1) |
| // - std::copy_n(from + 3 * K, K, values_cpu_pinned_ + K) |
| // - cudaMemcpyAsync(values_gpu_ + K, values_cpu_pinned_ + K, K * |
| // sizeof(T), H->D, stream_1) |
| // - cudaEventRecord(copy_finished_1, stream_1) |
| // - callback(values_gpu_ + K, K, 3 * K, stream_1) |
| // ... |
| // - Iteration #i: |
| // - cudaEventSynchronize(copy_finished_(i % 2)) |
| // - std::copy_n(from + i * K, K, values_cpu_pinned_ + (i % 2) * K) |
| // - cudaMemcpyAsync(values_gpu_ + (i % 2) * K, values_cpu_pinned_ + (i % |
| // 2) * K, K * sizeof(T), H->D, stream_(i % 2)) |
| // - cudaEventRecord(copy_finished_(i % 2), stream_(i % 2)) |
| // - callback(values_gpu_ + (i % 2) * K, K, i * K, stream_(i % 2)) |
| // ... |
| // cudaStreamSynchronize(stream_0) |
| // cudaStreamSynchronize(stream_1) |
| // |
| // This sequence of calls results in following activity on cpu and gpu |
| // (assuming that kernel invoked by callback takes less time than |
| // host-to-device copy and copy in cpu memory, and copy in cpu memory is |
| // faster than host-to-device copy): |
| // +----------------------------+-------------------+-------------------+ |
| // | Stream #0 | Stream #0 | Stream #1 | |
| // +----------------------------+-------------------+-------------------+ |
| // | Copy to pinned memory | | | |
| // | | | | |
| // +----------------------------+-------------------| | |
| // | Copy to pinned memory | Copy host->device | | |
| // | | | | |
| // +----------------------------+ | | |
| // | Waiting previous h->d copy | | | |
| // +----------------------------+-------------------+-------------------+ |
| // | Copy to pinned memory | Kernel | Copy host->device | |
| // | +-------------------+ | |
| // +----------------------------+ | | |
| // | Waiting previous h->d copy | | | |
| // +----------------------------+-------------------+-------------------+ |
| // | Copy to pinned memory | Copy host->device | Kernel | |
| // | | +-------------------+ |
| // | ... ... | |
| // +----------------------------+---------------------------------------+ |
| // |
| template <typename Fun> |
| void CopyToGpu(const T* from, const int num_values, Fun&& callback) { |
| // This synchronization is not required in some cases, but we perform it in |
| // order to avoid situation when user callback depends on data that is |
| // still to be computed in default stream |
| CHECK_EQ(cudaSuccess, cudaStreamSynchronize(context_->DefaultStream())); |
| |
| // If pointer to input data does not correspond to page-locked memory, |
| // host-to-device memory copy might be executed synchrnonously (with a copy |
| // to pinned memory happening inside the driver). In that case we perform |
| // copy to a pre-allocated array of page-locked memory. |
| const bool copy_to_pinned_memory = MemoryTypeResultsInSynchronousCopy(from); |
| T* batch_values_gpu[kNumBatches]; |
| T* batch_values_cpu[kNumBatches]; |
| auto streams = context_->streams_; |
| for (int i = 0; i < kNumBatches; ++i) { |
| batch_values_gpu[i] = values_gpu_.data() + kValuesPerBatch * i; |
| batch_values_cpu[i] = values_cpu_pinned_ + kValuesPerBatch * i; |
| } |
| int batch_id = 0; |
| for (int offset = 0; offset < num_values; offset += kValuesPerBatch) { |
| const int num_values_batch = |
| std::min(num_values - offset, kValuesPerBatch); |
| const T* batch_from = from + offset; |
| T* batch_to = batch_values_gpu[batch_id]; |
| auto stream = streams[batch_id]; |
| auto copy_finished = copy_finished_[batch_id]; |
| |
| if (copy_to_pinned_memory) { |
| // Copying values to a temporary buffer should be started only after the |
| // previous copy from temporary buffer to device is completed. |
| CHECK_EQ(cudaSuccess, cudaEventSynchronize(copy_finished)); |
| std::copy_n(batch_from, num_values_batch, batch_values_cpu[batch_id]); |
| batch_from = batch_values_cpu[batch_id]; |
| } |
| CHECK_EQ(cudaSuccess, |
| cudaMemcpyAsync(batch_to, |
| batch_from, |
| sizeof(T) * num_values_batch, |
| cudaMemcpyHostToDevice, |
| stream)); |
| if (copy_to_pinned_memory) { |
| // Next copy to a temporary buffer can start straight after asynchronous |
| // copy is completed (and might be started before kernels asynchronously |
| // executed in stream by user-supplied callback are completed). |
| // No explicit synchronization is required when copying data from |
| // page-locked memory, because memory copy and user kernel execution |
| // with corresponding part of values_gpu_ array is serialized using |
| // stream |
| CHECK_EQ(cudaSuccess, cudaEventRecord(copy_finished, stream)); |
| } |
| callback(batch_to, num_values_batch, offset, stream); |
| batch_id = (batch_id + 1) % kNumBatches; |
| } |
| // Explicitly synchronize on all CUDA streams that were utilized. |
| for (int i = 0; i < kNumBatches; ++i) { |
| CHECK_EQ(cudaSuccess, cudaStreamSynchronize(streams[i])); |
| } |
| } |
| |
| private: |
| // It is necessary to have all host-to-device copies to be completely |
| // asynchronous. This requires source memory to be allocated in page-locked |
| // memory. |
| static bool MemoryTypeResultsInSynchronousCopy(const void* ptr) { |
| cudaPointerAttributes attributes; |
| auto status = cudaPointerGetAttributes(&attributes, ptr); |
| #if CUDART_VERSION < 11000 |
| // In CUDA versions prior 11 call to cudaPointerGetAttributes with host |
| // pointer will return cudaErrorInvalidValue |
| if (status == cudaErrorInvalidValue) { |
| return true; |
| } |
| #endif |
| CHECK_EQ(status, cudaSuccess); |
| // This class only supports cpu memory as a source |
| CHECK_NE(attributes.type, cudaMemoryTypeDevice); |
| // If host memory was allocated (or registered) with CUDA API, or is a |
| // managed memory, then call to cudaMemcpyAsync will be asynchrnous. In case |
| // of managed memory it might be slightly better to perform a single call of |
| // user-provided call-back (and hope that page migration will provide a |
| // similar throughput with zero efforts from our side). |
| return attributes.type == cudaMemoryTypeUnregistered; |
| } |
| |
| const int kValuesPerBatch; |
| ContextImpl* context_ = nullptr; |
| CudaBuffer<T> values_gpu_; |
| T* values_cpu_pinned_ = nullptr; |
| cudaEvent_t copy_finished_[kNumBatches] = {nullptr}; |
| }; |
| |
| } // namespace ceres::internal |
| |
| #endif // CERES_NO_CUDA |
| #endif // CERES_INTERNAL_CUDA_STREAMED_BUFFER_H_ |