| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2023 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| // |
| // Limited memory positive definite approximation to the inverse |
| // Hessian, using the LBFGS algorithm |
| |
| #ifndef CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_ |
| #define CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_ |
| |
| #include <list> |
| |
| #include "ceres/internal/eigen.h" |
| #include "ceres/internal/export.h" |
| #include "ceres/linear_operator.h" |
| |
| namespace ceres::internal { |
| |
| // LowRankInverseHessian is a positive definite approximation to the |
| // Hessian using the limited memory variant of the |
| // Broyden-Fletcher-Goldfarb-Shanno (BFGS)secant formula for |
| // approximating the Hessian. |
| // |
| // Other update rules like the Davidon-Fletcher-Powell (DFP) are |
| // possible, but the BFGS rule is considered the best performing one. |
| // |
| // The limited memory variant was developed by Nocedal and further |
| // enhanced with scaling rule by Byrd, Nocedal and Schanbel. |
| // |
| // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with Limited |
| // Storage". Mathematics of Computation 35 (151): 773-782. |
| // |
| // Byrd, R. H.; Nocedal, J.; Schnabel, R. B. (1994). |
| // "Representations of Quasi-Newton Matrices and their use in |
| // Limited Memory Methods". Mathematical Programming 63 (4): |
| class CERES_NO_EXPORT LowRankInverseHessian final : public LinearOperator { |
| public: |
| // num_parameters is the row/column size of the Hessian. |
| // max_num_corrections is the rank of the Hessian approximation. |
| // use_approximate_eigenvalue_scaling controls whether the initial |
| // inverse Hessian used during Right/LeftMultiplyAndAccumulate() is scaled by |
| // the approximate eigenvalue of the true inverse Hessian at the |
| // current operating point. |
| // The approximation uses: |
| // 2 * max_num_corrections * num_parameters + max_num_corrections |
| // doubles. |
| LowRankInverseHessian(int num_parameters, |
| int max_num_corrections, |
| bool use_approximate_eigenvalue_scaling); |
| |
| // Update the low rank approximation. delta_x is the change in the |
| // domain of Hessian, and delta_gradient is the change in the |
| // gradient. The update copies the delta_x and delta_gradient |
| // vectors, and gets rid of the oldest delta_x and delta_gradient |
| // vectors if the number of corrections is already equal to |
| // max_num_corrections. |
| bool Update(const Vector& delta_x, const Vector& delta_gradient); |
| |
| // LinearOperator interface |
| void RightMultiplyAndAccumulate(const double* x, double* y) const final; |
| void LeftMultiplyAndAccumulate(const double* x, double* y) const final { |
| RightMultiplyAndAccumulate(x, y); |
| } |
| int num_rows() const final { return num_parameters_; } |
| int num_cols() const final { return num_parameters_; } |
| |
| private: |
| const int num_parameters_; |
| const int max_num_corrections_; |
| const bool use_approximate_eigenvalue_scaling_; |
| double approximate_eigenvalue_scale_; |
| ColMajorMatrix delta_x_history_; |
| ColMajorMatrix delta_gradient_history_; |
| Vector delta_x_dot_delta_gradient_; |
| std::list<int> indices_; |
| }; |
| |
| } // namespace ceres::internal |
| |
| #endif // CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_ |