blob: 309d7a89d4da7081b06970bca3172c67f4ab8c3a [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2023 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Authors: vitus@google.com (Michael Vitus),
// dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin)
#ifndef CERES_INTERNAL_PARTITION_RANGE_FOR_PARALLEL_FOR_H_
#define CERES_INTERNAL_PARTITION_RANGE_FOR_PARALLEL_FOR_H_
#include <algorithm>
#include <vector>
namespace ceres::internal {
// Check if it is possible to split range [start; end) into at most
// max_num_partitions contiguous partitions of cost not greater than
// max_partition_cost. Inclusive integer cumulative costs are provided by
// cumulative_cost_data objects, with cumulative_cost_offset being a total cost
// of all indices (starting from zero) preceding start element. Cumulative costs
// are returned by cumulative_cost_fun called with a reference to
// cumulative_cost_data element with index from range[start; end), and should be
// non-decreasing. Partition of the range is returned via partition argument
template <typename CumulativeCostData, typename CumulativeCostFun>
bool MaxPartitionCostIsFeasible(int start,
int end,
int max_num_partitions,
int max_partition_cost,
int cumulative_cost_offset,
const CumulativeCostData* cumulative_cost_data,
CumulativeCostFun&& cumulative_cost_fun,
std::vector<int>* partition) {
partition->clear();
partition->push_back(start);
int partition_start = start;
int cost_offset = cumulative_cost_offset;
while (partition_start < end) {
// Already have max_num_partitions
if (partition->size() > max_num_partitions) {
return false;
}
const int target = max_partition_cost + cost_offset;
const int partition_end =
std::partition_point(
cumulative_cost_data + partition_start,
cumulative_cost_data + end,
[&cumulative_cost_fun, target](const CumulativeCostData& item) {
return cumulative_cost_fun(item) <= target;
}) -
cumulative_cost_data;
// Unable to make a partition from a single element
if (partition_end == partition_start) {
return false;
}
const int cost_last =
cumulative_cost_fun(cumulative_cost_data[partition_end - 1]);
partition->push_back(partition_end);
partition_start = partition_end;
cost_offset = cost_last;
}
return true;
}
// Split integer interval [start, end) into at most max_num_partitions
// contiguous intervals, minimizing maximal total cost of a single interval.
// Inclusive integer cumulative costs for each (zero-based) index are provided
// by cumulative_cost_data objects, and are returned by cumulative_cost_fun call
// with a reference to one of the objects from range [start, end)
template <typename CumulativeCostData, typename CumulativeCostFun>
std::vector<int> PartitionRangeForParallelFor(
int start,
int end,
int max_num_partitions,
const CumulativeCostData* cumulative_cost_data,
CumulativeCostFun&& cumulative_cost_fun) {
// Given maximal partition cost, it is possible to verify if it is admissible
// and obtain corresponding partition using MaxPartitionCostIsFeasible
// function. In order to find the lowest admissible value, a binary search
// over all potentially optimal cost values is being performed
const int cumulative_cost_last =
cumulative_cost_fun(cumulative_cost_data[end - 1]);
const int cumulative_cost_offset =
start ? cumulative_cost_fun(cumulative_cost_data[start - 1]) : 0;
const int total_cost = cumulative_cost_last - cumulative_cost_offset;
// Minimal maximal partition cost is not smaller than the average
// We will use non-inclusive lower bound
int partition_cost_lower_bound = total_cost / max_num_partitions - 1;
// Minimal maximal partition cost is not larger than the total cost
// Upper bound is inclusive
int partition_cost_upper_bound = total_cost;
std::vector<int> partition;
// Range partition corresponding to the latest evaluated upper bound.
// A single segment covering the whole input interval [start, end) corresponds
// to minimal maximal partition cost of total_cost.
std::vector<int> partition_upper_bound = {start, end};
// Binary search over partition cost, returning the lowest admissible cost
while (partition_cost_upper_bound - partition_cost_lower_bound > 1) {
partition.reserve(max_num_partitions + 1);
const int partition_cost =
partition_cost_lower_bound +
(partition_cost_upper_bound - partition_cost_lower_bound) / 2;
bool admissible = MaxPartitionCostIsFeasible(
start,
end,
max_num_partitions,
partition_cost,
cumulative_cost_offset,
cumulative_cost_data,
std::forward<CumulativeCostFun>(cumulative_cost_fun),
&partition);
if (admissible) {
partition_cost_upper_bound = partition_cost;
std::swap(partition, partition_upper_bound);
} else {
partition_cost_lower_bound = partition_cost;
}
}
return partition_upper_bound;
}
} // namespace ceres::internal
#endif