| // Copyright 2018 The Abseil Authors. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //      https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 | // | 
 | // ----------------------------------------------------------------------------- | 
 | // File: fixed_array.h | 
 | // ----------------------------------------------------------------------------- | 
 | // | 
 | // A `FixedArray<T>` represents a non-resizable array of `T` where the length of | 
 | // the array can be determined at run-time. It is a good replacement for | 
 | // non-standard and deprecated uses of `alloca()` and variable length arrays | 
 | // within the GCC extension. (See | 
 | // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html). | 
 | // | 
 | // `FixedArray` allocates small arrays inline, keeping performance fast by | 
 | // avoiding heap operations. It also helps reduce the chances of | 
 | // accidentally overflowing your stack if large input is passed to | 
 | // your function. | 
 |  | 
 | #ifndef CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ | 
 | #define CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ | 
 |  | 
 | #include <algorithm> | 
 | #include <array> | 
 | #include <cstddef> | 
 | #include <memory> | 
 | #include <tuple> | 
 | #include <type_traits> | 
 |  | 
 | #include <Eigen/Core> // For Eigen::aligned_allocator | 
 |  | 
 | #include "ceres/internal/algorithm.h" | 
 | #include "ceres/internal/memory.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1); | 
 |  | 
 | // The default fixed array allocator. | 
 | // | 
 | // As one can not easily detect if a struct contains or inherits from a fixed | 
 | // size Eigen type, to be safe the Eigen::aligned_allocator is used by default. | 
 | // But trivial types can never contain Eigen types, so std::allocator is used to | 
 | // safe some heap memory. | 
 | template <typename T> | 
 | using FixedArrayDefaultAllocator = | 
 |     typename std::conditional<std::is_trivial<T>::value, | 
 |                               std::allocator<T>, | 
 |                               Eigen::aligned_allocator<T>>::type; | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // FixedArray | 
 | // ----------------------------------------------------------------------------- | 
 | // | 
 | // A `FixedArray` provides a run-time fixed-size array, allocating a small array | 
 | // inline for efficiency. | 
 | // | 
 | // Most users should not specify an `inline_elements` argument and let | 
 | // `FixedArray` automatically determine the number of elements | 
 | // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the | 
 | // `FixedArray` implementation will use inline storage for arrays with a | 
 | // length <= `inline_elements`. | 
 | // | 
 | // Note that a `FixedArray` constructed with a `size_type` argument will | 
 | // default-initialize its values by leaving trivially constructible types | 
 | // uninitialized (e.g. int, int[4], double), and others default-constructed. | 
 | // This matches the behavior of c-style arrays and `std::array`, but not | 
 | // `std::vector`. | 
 | // | 
 | // Note that `FixedArray` does not provide a public allocator; if it requires a | 
 | // heap allocation, it will do so with global `::operator new[]()` and | 
 | // `::operator delete[]()`, even if T provides class-scope overrides for these | 
 | // operators. | 
 | template <typename T, | 
 |           size_t N = kFixedArrayUseDefault, | 
 |           typename A = FixedArrayDefaultAllocator<T>> | 
 | class FixedArray { | 
 |   static_assert(!std::is_array<T>::value || std::extent<T>::value > 0, | 
 |                 "Arrays with unknown bounds cannot be used with FixedArray."); | 
 |  | 
 |   static constexpr size_t kInlineBytesDefault = 256; | 
 |  | 
 |   using AllocatorTraits = std::allocator_traits<A>; | 
 |   // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17, | 
 |   // but this seems to be mostly pedantic. | 
 |   template <typename Iterator> | 
 |   using EnableIfForwardIterator = typename std::enable_if<std::is_convertible< | 
 |       typename std::iterator_traits<Iterator>::iterator_category, | 
 |       std::forward_iterator_tag>::value>::type; | 
 |   static constexpr bool DefaultConstructorIsNonTrivial() { | 
 |     return !std::is_trivially_default_constructible<StorageElement>::value; | 
 |   } | 
 |  | 
 |  public: | 
 |   using allocator_type = typename AllocatorTraits::allocator_type; | 
 |   using value_type = typename allocator_type::value_type; | 
 |   using pointer = typename allocator_type::pointer; | 
 |   using const_pointer = typename allocator_type::const_pointer; | 
 |   using reference = typename allocator_type::reference; | 
 |   using const_reference = typename allocator_type::const_reference; | 
 |   using size_type = typename allocator_type::size_type; | 
 |   using difference_type = typename allocator_type::difference_type; | 
 |   using iterator = pointer; | 
 |   using const_iterator = const_pointer; | 
 |   using reverse_iterator = std::reverse_iterator<iterator>; | 
 |   using const_reverse_iterator = std::reverse_iterator<const_iterator>; | 
 |  | 
 |   static constexpr size_type inline_elements = | 
 |       (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type) | 
 |                                   : static_cast<size_type>(N)); | 
 |  | 
 |   FixedArray(const FixedArray& other, | 
 |              const allocator_type& a = allocator_type()) | 
 |       : FixedArray(other.begin(), other.end(), a) {} | 
 |  | 
 |   FixedArray(FixedArray&& other, const allocator_type& a = allocator_type()) | 
 |       : FixedArray(std::make_move_iterator(other.begin()), | 
 |                    std::make_move_iterator(other.end()), | 
 |                    a) {} | 
 |  | 
 |   // Creates an array object that can store `n` elements. | 
 |   // Note that trivially constructible elements will be uninitialized. | 
 |   explicit FixedArray(size_type n, const allocator_type& a = allocator_type()) | 
 |       : storage_(n, a) { | 
 |     if (DefaultConstructorIsNonTrivial()) { | 
 |       ConstructRange(storage_.alloc(), storage_.begin(), storage_.end()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Creates an array initialized with `n` copies of `val`. | 
 |   FixedArray(size_type n, | 
 |              const value_type& val, | 
 |              const allocator_type& a = allocator_type()) | 
 |       : storage_(n, a) { | 
 |     ConstructRange(storage_.alloc(), storage_.begin(), storage_.end(), val); | 
 |   } | 
 |  | 
 |   // Creates an array initialized with the size and contents of `init_list`. | 
 |   FixedArray(std::initializer_list<value_type> init_list, | 
 |              const allocator_type& a = allocator_type()) | 
 |       : FixedArray(init_list.begin(), init_list.end(), a) {} | 
 |  | 
 |   // Creates an array initialized with the elements from the input | 
 |   // range. The array's size will always be `std::distance(first, last)`. | 
 |   // REQUIRES: Iterator must be a forward_iterator or better. | 
 |   template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr> | 
 |   FixedArray(Iterator first, | 
 |              Iterator last, | 
 |              const allocator_type& a = allocator_type()) | 
 |       : storage_(std::distance(first, last), a) { | 
 |     CopyRange(storage_.alloc(), storage_.begin(), first, last); | 
 |   } | 
 |  | 
 |   // Releases any resources. | 
 |   ~FixedArray() { | 
 |     for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) { | 
 |       AllocatorTraits::destroy(storage_.alloc(), cur); | 
 |     } | 
 |   } | 
 |  | 
 |   // Assignments are deleted because they break the invariant that the size of a | 
 |   // `FixedArray` never changes. | 
 |   void operator=(FixedArray&&) = delete; | 
 |   void operator=(const FixedArray&) = delete; | 
 |  | 
 |   // FixedArray::size() | 
 |   // | 
 |   // Returns the length of the fixed array. | 
 |   size_type size() const { return storage_.size(); } | 
 |  | 
 |   // FixedArray::max_size() | 
 |   // | 
 |   // Returns the largest possible value of `std::distance(begin(), end())` for a | 
 |   // `FixedArray<T>`. This is equivalent to the most possible addressable bytes | 
 |   // over the number of bytes taken by T. | 
 |   constexpr size_type max_size() const { | 
 |     return (std::numeric_limits<difference_type>::max)() / sizeof(value_type); | 
 |   } | 
 |  | 
 |   // FixedArray::empty() | 
 |   // | 
 |   // Returns whether or not the fixed array is empty. | 
 |   bool empty() const { return size() == 0; } | 
 |  | 
 |   // FixedArray::memsize() | 
 |   // | 
 |   // Returns the memory size of the fixed array in bytes. | 
 |   size_t memsize() const { return size() * sizeof(value_type); } | 
 |  | 
 |   // FixedArray::data() | 
 |   // | 
 |   // Returns a const T* pointer to elements of the `FixedArray`. This pointer | 
 |   // can be used to access (but not modify) the contained elements. | 
 |   const_pointer data() const { return AsValueType(storage_.begin()); } | 
 |  | 
 |   // Overload of FixedArray::data() to return a T* pointer to elements of the | 
 |   // fixed array. This pointer can be used to access and modify the contained | 
 |   // elements. | 
 |   pointer data() { return AsValueType(storage_.begin()); } | 
 |  | 
 |   // FixedArray::operator[] | 
 |   // | 
 |   // Returns a reference the ith element of the fixed array. | 
 |   // REQUIRES: 0 <= i < size() | 
 |   reference operator[](size_type i) { | 
 |     DCHECK_LT(i, size()); | 
 |     return data()[i]; | 
 |   } | 
 |  | 
 |   // Overload of FixedArray::operator()[] to return a const reference to the | 
 |   // ith element of the fixed array. | 
 |   // REQUIRES: 0 <= i < size() | 
 |   const_reference operator[](size_type i) const { | 
 |     DCHECK_LT(i, size()); | 
 |     return data()[i]; | 
 |   } | 
 |  | 
 |   // FixedArray::front() | 
 |   // | 
 |   // Returns a reference to the first element of the fixed array. | 
 |   reference front() { return *begin(); } | 
 |  | 
 |   // Overload of FixedArray::front() to return a reference to the first element | 
 |   // of a fixed array of const values. | 
 |   const_reference front() const { return *begin(); } | 
 |  | 
 |   // FixedArray::back() | 
 |   // | 
 |   // Returns a reference to the last element of the fixed array. | 
 |   reference back() { return *(end() - 1); } | 
 |  | 
 |   // Overload of FixedArray::back() to return a reference to the last element | 
 |   // of a fixed array of const values. | 
 |   const_reference back() const { return *(end() - 1); } | 
 |  | 
 |   // FixedArray::begin() | 
 |   // | 
 |   // Returns an iterator to the beginning of the fixed array. | 
 |   iterator begin() { return data(); } | 
 |  | 
 |   // Overload of FixedArray::begin() to return a const iterator to the | 
 |   // beginning of the fixed array. | 
 |   const_iterator begin() const { return data(); } | 
 |  | 
 |   // FixedArray::cbegin() | 
 |   // | 
 |   // Returns a const iterator to the beginning of the fixed array. | 
 |   const_iterator cbegin() const { return begin(); } | 
 |  | 
 |   // FixedArray::end() | 
 |   // | 
 |   // Returns an iterator to the end of the fixed array. | 
 |   iterator end() { return data() + size(); } | 
 |  | 
 |   // Overload of FixedArray::end() to return a const iterator to the end of the | 
 |   // fixed array. | 
 |   const_iterator end() const { return data() + size(); } | 
 |  | 
 |   // FixedArray::cend() | 
 |   // | 
 |   // Returns a const iterator to the end of the fixed array. | 
 |   const_iterator cend() const { return end(); } | 
 |  | 
 |   // FixedArray::rbegin() | 
 |   // | 
 |   // Returns a reverse iterator from the end of the fixed array. | 
 |   reverse_iterator rbegin() { return reverse_iterator(end()); } | 
 |  | 
 |   // Overload of FixedArray::rbegin() to return a const reverse iterator from | 
 |   // the end of the fixed array. | 
 |   const_reverse_iterator rbegin() const { | 
 |     return const_reverse_iterator(end()); | 
 |   } | 
 |  | 
 |   // FixedArray::crbegin() | 
 |   // | 
 |   // Returns a const reverse iterator from the end of the fixed array. | 
 |   const_reverse_iterator crbegin() const { return rbegin(); } | 
 |  | 
 |   // FixedArray::rend() | 
 |   // | 
 |   // Returns a reverse iterator from the beginning of the fixed array. | 
 |   reverse_iterator rend() { return reverse_iterator(begin()); } | 
 |  | 
 |   // Overload of FixedArray::rend() for returning a const reverse iterator | 
 |   // from the beginning of the fixed array. | 
 |   const_reverse_iterator rend() const { | 
 |     return const_reverse_iterator(begin()); | 
 |   } | 
 |  | 
 |   // FixedArray::crend() | 
 |   // | 
 |   // Returns a reverse iterator from the beginning of the fixed array. | 
 |   const_reverse_iterator crend() const { return rend(); } | 
 |  | 
 |   // FixedArray::fill() | 
 |   // | 
 |   // Assigns the given `value` to all elements in the fixed array. | 
 |   void fill(const value_type& val) { std::fill(begin(), end(), val); } | 
 |  | 
 |   // Relational operators. Equality operators are elementwise using | 
 |   // `operator==`, while order operators order FixedArrays lexicographically. | 
 |   friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) { | 
 |     return internal::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); | 
 |   } | 
 |  | 
 |   friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) { | 
 |     return !(lhs == rhs); | 
 |   } | 
 |  | 
 |   friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) { | 
 |     return std::lexicographical_compare( | 
 |         lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); | 
 |   } | 
 |  | 
 |   friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) { | 
 |     return rhs < lhs; | 
 |   } | 
 |  | 
 |   friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) { | 
 |     return !(rhs < lhs); | 
 |   } | 
 |  | 
 |   friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) { | 
 |     return !(lhs < rhs); | 
 |   } | 
 |  | 
 |  private: | 
 |   // StorageElement | 
 |   // | 
 |   // For FixedArrays with a C-style-array value_type, StorageElement is a POD | 
 |   // wrapper struct called StorageElementWrapper that holds the value_type | 
 |   // instance inside. This is needed for construction and destruction of the | 
 |   // entire array regardless of how many dimensions it has. For all other cases, | 
 |   // StorageElement is just an alias of value_type. | 
 |   // | 
 |   // Maintainer's Note: The simpler solution would be to simply wrap value_type | 
 |   // in a struct whether it's an array or not. That causes some paranoid | 
 |   // diagnostics to misfire, believing that 'data()' returns a pointer to a | 
 |   // single element, rather than the packed array that it really is. | 
 |   // e.g.: | 
 |   // | 
 |   //     FixedArray<char> buf(1); | 
 |   //     sprintf(buf.data(), "foo"); | 
 |   // | 
 |   //     error: call to int __builtin___sprintf_chk(etc...) | 
 |   //     will always overflow destination buffer [-Werror] | 
 |   // | 
 |   template <typename OuterT = value_type, | 
 |             typename InnerT = typename std::remove_extent<OuterT>::type, | 
 |             size_t InnerN = std::extent<OuterT>::value> | 
 |   struct StorageElementWrapper { | 
 |     InnerT array[InnerN]; | 
 |   }; | 
 |  | 
 |   using StorageElement = | 
 |       typename std::conditional<std::is_array<value_type>::value, | 
 |                                 StorageElementWrapper<value_type>, | 
 |                                 value_type>::type; | 
 |   using StorageElementBuffer = | 
 |       typename std::aligned_storage<sizeof(StorageElement), | 
 |                                     alignof(StorageElement)>::type; | 
 |  | 
 |   static pointer AsValueType(pointer ptr) { return ptr; } | 
 |   static pointer AsValueType(StorageElementWrapper<value_type>* ptr) { | 
 |     return std::addressof(ptr->array); | 
 |   } | 
 |  | 
 |   static_assert(sizeof(StorageElement) == sizeof(value_type), ""); | 
 |   static_assert(alignof(StorageElement) == alignof(value_type), ""); | 
 |  | 
 |   struct NonEmptyInlinedStorage { | 
 |     StorageElement* data() { | 
 |       return reinterpret_cast<StorageElement*>(inlined_storage_.data()); | 
 |     } | 
 |  | 
 |     // #ifdef ADDRESS_SANITIZER | 
 |     //     void* RedzoneBegin() { return &redzone_begin_; } | 
 |     //     void* RedzoneEnd() { return &redzone_end_ + 1; } | 
 |     // #endif  // ADDRESS_SANITIZER | 
 |  | 
 |     void AnnotateConstruct(size_type) {} | 
 |     void AnnotateDestruct(size_type) {} | 
 |  | 
 |     // ADDRESS_SANITIZER_REDZONE(redzone_begin_); | 
 |     std::array<StorageElementBuffer, inline_elements> inlined_storage_; | 
 |     // ADDRESS_SANITIZER_REDZONE(redzone_end_); | 
 |   }; | 
 |  | 
 |   struct EmptyInlinedStorage { | 
 |     StorageElement* data() { return nullptr; } | 
 |     void AnnotateConstruct(size_type) {} | 
 |     void AnnotateDestruct(size_type) {} | 
 |   }; | 
 |  | 
 |   using InlinedStorage = | 
 |       typename std::conditional<inline_elements == 0, | 
 |                                 EmptyInlinedStorage, | 
 |                                 NonEmptyInlinedStorage>::type; | 
 |  | 
 |   // Storage | 
 |   // | 
 |   // An instance of Storage manages the inline and out-of-line memory for | 
 |   // instances of FixedArray. This guarantees that even when construction of | 
 |   // individual elements fails in the FixedArray constructor body, the | 
 |   // destructor for Storage will still be called and out-of-line memory will be | 
 |   // properly deallocated. | 
 |   // | 
 |   class Storage : public InlinedStorage { | 
 |    public: | 
 |     Storage(size_type n, const allocator_type& a) | 
 |         : size_alloc_(n, a), data_(InitializeData()) {} | 
 |  | 
 |     ~Storage() noexcept { | 
 |       if (UsingInlinedStorage(size())) { | 
 |         InlinedStorage::AnnotateDestruct(size()); | 
 |       } else { | 
 |         AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size()); | 
 |       } | 
 |     } | 
 |  | 
 |     size_type size() const { return std::get<0>(size_alloc_); } | 
 |     StorageElement* begin() const { return data_; } | 
 |     StorageElement* end() const { return begin() + size(); } | 
 |     allocator_type& alloc() { return std::get<1>(size_alloc_); } | 
 |  | 
 |    private: | 
 |     static bool UsingInlinedStorage(size_type n) { | 
 |       return n <= inline_elements; | 
 |     } | 
 |  | 
 |     StorageElement* InitializeData() { | 
 |       if (UsingInlinedStorage(size())) { | 
 |         InlinedStorage::AnnotateConstruct(size()); | 
 |         return InlinedStorage::data(); | 
 |       } else { | 
 |         return reinterpret_cast<StorageElement*>( | 
 |             AllocatorTraits::allocate(alloc(), size())); | 
 |       } | 
 |     } | 
 |  | 
 |     // Using std::tuple and not absl::CompressedTuple, as it has a lot of | 
 |     // dependencies to other absl headers. | 
 |     std::tuple<size_type, allocator_type> size_alloc_; | 
 |     StorageElement* data_; | 
 |   }; | 
 |  | 
 |   Storage storage_; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_ |