| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 | // | 
 | // A preconditioned conjugate gradients solver | 
 | // (ConjugateGradientsSolver) for positive semidefinite linear | 
 | // systems. | 
 | // | 
 | // We have also augmented the termination criterion used by this | 
 | // solver to support not just residual based termination but also | 
 | // termination based on decrease in the value of the quadratic model | 
 | // that CG optimizes. | 
 |  | 
 | #include "ceres/conjugate_gradients_solver.h" | 
 |  | 
 | #include <cmath> | 
 | #include <cstddef> | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_operator.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "ceres/types.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 | namespace { | 
 |  | 
 | bool IsZeroOrInfinity(double x) { | 
 |   return ((x == 0.0) || std::isinf(x)); | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | ConjugateGradientsSolver::ConjugateGradientsSolver( | 
 |     const LinearSolver::Options& options) | 
 |     : options_(options) { | 
 | } | 
 |  | 
 | LinearSolver::Summary ConjugateGradientsSolver::Solve( | 
 |     LinearOperator* A, | 
 |     const double* b, | 
 |     const LinearSolver::PerSolveOptions& per_solve_options, | 
 |     double* x) { | 
 |   CHECK(A != nullptr); | 
 |   CHECK(x != nullptr); | 
 |   CHECK(b != nullptr); | 
 |   CHECK_EQ(A->num_rows(), A->num_cols()); | 
 |  | 
 |   LinearSolver::Summary summary; | 
 |   summary.termination_type = LINEAR_SOLVER_NO_CONVERGENCE; | 
 |   summary.message = "Maximum number of iterations reached."; | 
 |   summary.num_iterations = 0; | 
 |  | 
 |   const int num_cols = A->num_cols(); | 
 |   VectorRef xref(x, num_cols); | 
 |   ConstVectorRef bref(b, num_cols); | 
 |  | 
 |   const double norm_b = bref.norm(); | 
 |   if (norm_b == 0.0) { | 
 |     xref.setZero(); | 
 |     summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
 |     summary.message = "Convergence. |b| = 0."; | 
 |     return summary; | 
 |   } | 
 |  | 
 |   Vector r(num_cols); | 
 |   Vector p(num_cols); | 
 |   Vector z(num_cols); | 
 |   Vector tmp(num_cols); | 
 |  | 
 |   const double tol_r = per_solve_options.r_tolerance * norm_b; | 
 |  | 
 |   tmp.setZero(); | 
 |   A->RightMultiply(x, tmp.data()); | 
 |   r = bref - tmp; | 
 |   double norm_r = r.norm(); | 
 |   if (options_.min_num_iterations == 0 && norm_r <= tol_r) { | 
 |     summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
 |     summary.message = | 
 |         StringPrintf("Convergence. |r| = %e <= %e.", norm_r, tol_r); | 
 |     return summary; | 
 |   } | 
 |  | 
 |   double rho = 1.0; | 
 |  | 
 |   // Initial value of the quadratic model Q = x'Ax - 2 * b'x. | 
 |   double Q0 = -1.0 * xref.dot(bref + r); | 
 |  | 
 |   for (summary.num_iterations = 1;; ++summary.num_iterations) { | 
 |     // Apply preconditioner | 
 |     if (per_solve_options.preconditioner != NULL) { | 
 |       z.setZero(); | 
 |       per_solve_options.preconditioner->RightMultiply(r.data(), z.data()); | 
 |     } else { | 
 |       z = r; | 
 |     } | 
 |  | 
 |     double last_rho = rho; | 
 |     rho = r.dot(z); | 
 |     if (IsZeroOrInfinity(rho)) { | 
 |       summary.termination_type = LINEAR_SOLVER_FAILURE; | 
 |       summary.message = StringPrintf("Numerical failure. rho = r'z = %e.", rho); | 
 |       break; | 
 |     } | 
 |  | 
 |     if (summary.num_iterations == 1) { | 
 |       p = z; | 
 |     } else { | 
 |       double beta = rho / last_rho; | 
 |       if (IsZeroOrInfinity(beta)) { | 
 |         summary.termination_type = LINEAR_SOLVER_FAILURE; | 
 |         summary.message = StringPrintf( | 
 |             "Numerical failure. beta = rho_n / rho_{n-1} = %e, " | 
 |             "rho_n = %e, rho_{n-1} = %e", beta, rho, last_rho); | 
 |         break; | 
 |       } | 
 |       p = z + beta * p; | 
 |     } | 
 |  | 
 |     Vector& q = z; | 
 |     q.setZero(); | 
 |     A->RightMultiply(p.data(), q.data()); | 
 |     const double pq = p.dot(q); | 
 |     if ((pq <= 0) || std::isinf(pq)) { | 
 |       summary.termination_type = LINEAR_SOLVER_NO_CONVERGENCE; | 
 |       summary.message = StringPrintf( | 
 |           "Matrix is indefinite, no more progress can be made. " | 
 |           "p'q = %e. |p| = %e, |q| = %e", | 
 |           pq, p.norm(), q.norm()); | 
 |       break; | 
 |     } | 
 |  | 
 |     const double alpha = rho / pq; | 
 |     if (std::isinf(alpha)) { | 
 |       summary.termination_type = LINEAR_SOLVER_FAILURE; | 
 |       summary.message = | 
 |           StringPrintf("Numerical failure. alpha = rho / pq = %e, " | 
 |                        "rho = %e, pq = %e.", alpha, rho, pq); | 
 |       break; | 
 |     } | 
 |  | 
 |     xref = xref + alpha * p; | 
 |  | 
 |     // Ideally we would just use the update r = r - alpha*q to keep | 
 |     // track of the residual vector. However this estimate tends to | 
 |     // drift over time due to round off errors. Thus every | 
 |     // residual_reset_period iterations, we calculate the residual as | 
 |     // r = b - Ax. We do not do this every iteration because this | 
 |     // requires an additional matrix vector multiply which would | 
 |     // double the complexity of the CG algorithm. | 
 |     if (summary.num_iterations % options_.residual_reset_period == 0) { | 
 |       tmp.setZero(); | 
 |       A->RightMultiply(x, tmp.data()); | 
 |       r = bref - tmp; | 
 |     } else { | 
 |       r = r - alpha * q; | 
 |     } | 
 |  | 
 |     // Quadratic model based termination. | 
 |     //   Q1 = x'Ax - 2 * b' x. | 
 |     const double Q1 = -1.0 * xref.dot(bref + r); | 
 |  | 
 |     // For PSD matrices A, let | 
 |     // | 
 |     //   Q(x) = x'Ax - 2b'x | 
 |     // | 
 |     // be the cost of the quadratic function defined by A and b. Then, | 
 |     // the solver terminates at iteration i if | 
 |     // | 
 |     //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance. | 
 |     // | 
 |     // This termination criterion is more useful when using CG to | 
 |     // solve the Newton step. This particular convergence test comes | 
 |     // from Stephen Nash's work on truncated Newton | 
 |     // methods. References: | 
 |     // | 
 |     //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search | 
 |     //   Direction Within A Truncated Newton Method, Operation | 
 |     //   Research Letters 9(1990) 219-221. | 
 |     // | 
 |     //   2. Stephen G. Nash, A Survey of Truncated Newton Methods, | 
 |     //   Journal of Computational and Applied Mathematics, | 
 |     //   124(1-2), 45-59, 2000. | 
 |     // | 
 |     const double zeta = summary.num_iterations * (Q1 - Q0) / Q1; | 
 |     if (zeta < per_solve_options.q_tolerance && | 
 |         summary.num_iterations >= options_.min_num_iterations) { | 
 |       summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
 |       summary.message = | 
 |           StringPrintf("Iteration: %d Convergence: zeta = %e < %e. |r| = %e", | 
 |                        summary.num_iterations, | 
 |                        zeta, | 
 |                        per_solve_options.q_tolerance, | 
 |                        r.norm()); | 
 |       break; | 
 |     } | 
 |     Q0 = Q1; | 
 |  | 
 |     // Residual based termination. | 
 |     norm_r = r. norm(); | 
 |     if (norm_r <= tol_r && | 
 |         summary.num_iterations >= options_.min_num_iterations) { | 
 |       summary.termination_type = LINEAR_SOLVER_SUCCESS; | 
 |       summary.message = | 
 |           StringPrintf("Iteration: %d Convergence. |r| = %e <= %e.", | 
 |                        summary.num_iterations, | 
 |                        norm_r, | 
 |                        tol_r); | 
 |       break; | 
 |     } | 
 |  | 
 |     if (summary.num_iterations >= options_.max_num_iterations) { | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   return summary; | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |