| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #ifndef CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_ | 
 | #define CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_ | 
 |  | 
 | #include "ceres/cost_function.h" | 
 | #include "ceres/sized_cost_function.h" | 
 | #include "ceres/types.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | // Noise factor for randomized cost function. | 
 | static const double kNoiseFactor = 0.01; | 
 |  | 
 | // Default random seed for randomized cost function. | 
 | static const unsigned int kRandomSeed = 1234; | 
 |  | 
 | // y1 = x1'x2      -> dy1/dx1 = x2,               dy1/dx2 = x1 | 
 | // y2 = (x1'x2)^2  -> dy2/dx1 = 2 * x2 * (x1'x2), dy2/dx2 = 2 * x1 * (x1'x2) | 
 | // y3 = x2'x2      -> dy3/dx1 = 0,                dy3/dx2 = 2 * x2 | 
 | class EasyFunctor { | 
 |  public: | 
 |   bool operator()(const double* x1, const double* x2, double* residuals) const; | 
 |   void ExpectCostFunctionEvaluationIsNearlyCorrect( | 
 |       const CostFunction& cost_function, | 
 |       NumericDiffMethodType method) const; | 
 | }; | 
 |  | 
 | class EasyCostFunction : public SizedCostFunction<3, 5, 5> { | 
 |  public: | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** /* not used */) const { | 
 |     return functor_(parameters[0], parameters[1], residuals); | 
 |   } | 
 |  | 
 |  private: | 
 |   EasyFunctor functor_; | 
 | }; | 
 |  | 
 | // y1 = sin(x1'x2) | 
 | // y2 = exp(-x1'x2 / 10) | 
 | // | 
 | // dy1/dx1 =  x2 * cos(x1'x2),            dy1/dx2 =  x1 * cos(x1'x2) | 
 | // dy2/dx1 = -x2 * exp(-x1'x2 / 10) / 10, dy2/dx2 = -x2 * exp(-x1'x2 / 10) / 10 | 
 | class TranscendentalFunctor { | 
 |  public: | 
 |   bool operator()(const double* x1, const double* x2, double* residuals) const; | 
 |   void ExpectCostFunctionEvaluationIsNearlyCorrect( | 
 |       const CostFunction& cost_function, | 
 |       NumericDiffMethodType method) const; | 
 | }; | 
 |  | 
 | class TranscendentalCostFunction : public SizedCostFunction<2, 5, 5> { | 
 |  public: | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** /* not used */) const { | 
 |     return functor_(parameters[0], parameters[1], residuals); | 
 |   } | 
 |  private: | 
 |   TranscendentalFunctor functor_; | 
 | }; | 
 |  | 
 | // y = exp(x), dy/dx = exp(x) | 
 | class ExponentialFunctor { | 
 |  public: | 
 |   bool operator()(const double* x1, double* residuals) const; | 
 |   void ExpectCostFunctionEvaluationIsNearlyCorrect( | 
 |       const CostFunction& cost_function) const; | 
 | }; | 
 |  | 
 | class ExponentialCostFunction : public SizedCostFunction<1, 1> { | 
 |  public: | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** /* not used */) const { | 
 |     return functor_(parameters[0], residuals); | 
 |   } | 
 |  | 
 |  private: | 
 |   ExponentialFunctor functor_; | 
 | }; | 
 |  | 
 | // Test adaptive numeric differentiation by synthetically adding random noise | 
 | // to a functor. | 
 | // y = x^2 + [random noise], dy/dx ~ 2x | 
 | class RandomizedFunctor { | 
 |  public: | 
 |   RandomizedFunctor(double noise_factor, unsigned int random_seed) | 
 |       : noise_factor_(noise_factor), random_seed_(random_seed) { | 
 |   } | 
 |  | 
 |   bool operator()(const double* x1, double* residuals) const; | 
 |   void ExpectCostFunctionEvaluationIsNearlyCorrect( | 
 |       const CostFunction& cost_function) const; | 
 |  | 
 |  private: | 
 |   double noise_factor_; | 
 |   unsigned int random_seed_; | 
 | }; | 
 |  | 
 | class RandomizedCostFunction : public SizedCostFunction<1, 1> { | 
 |  public: | 
 |   RandomizedCostFunction(double noise_factor, unsigned int random_seed) | 
 |       : functor_(noise_factor, random_seed) { | 
 |   } | 
 |  | 
 |   virtual bool Evaluate(double const* const* parameters, | 
 |                         double* residuals, | 
 |                         double** /* not used */) const { | 
 |     return functor_(parameters[0], residuals); | 
 |   } | 
 |  | 
 |  private: | 
 |   RandomizedFunctor functor_; | 
 | }; | 
 |  | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_INTERNAL_NUMERIC_DIFF_TEST_UTILS_H_ |