|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/block_jacobi_preconditioner.h" | 
|  |  | 
|  | #include <memory> | 
|  | #include <random> | 
|  | #include <vector> | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "ceres/block_random_access_diagonal_matrix.h" | 
|  | #include "ceres/block_sparse_matrix.h" | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | TEST(BlockSparseJacobiPreconditioner, _) { | 
|  | constexpr int kNumtrials = 10; | 
|  | BlockSparseMatrix::RandomMatrixOptions options; | 
|  | options.num_col_blocks = 3; | 
|  | options.min_col_block_size = 1; | 
|  | options.max_col_block_size = 3; | 
|  |  | 
|  | options.num_row_blocks = 5; | 
|  | options.min_row_block_size = 1; | 
|  | options.max_row_block_size = 4; | 
|  | options.block_density = 0.25; | 
|  | std::mt19937 prng; | 
|  |  | 
|  | Preconditioner::Options preconditioner_options; | 
|  | ContextImpl context; | 
|  | preconditioner_options.context = &context; | 
|  |  | 
|  | for (int trial = 0; trial < kNumtrials; ++trial) { | 
|  | auto jacobian = BlockSparseMatrix::CreateRandomMatrix(options, prng); | 
|  | Vector diagonal = Vector::Ones(jacobian->num_cols()); | 
|  | Matrix dense_jacobian; | 
|  | jacobian->ToDenseMatrix(&dense_jacobian); | 
|  | Matrix hessian = dense_jacobian.transpose() * dense_jacobian; | 
|  | hessian.diagonal() += diagonal.array().square().matrix(); | 
|  |  | 
|  | BlockSparseJacobiPreconditioner pre(preconditioner_options, *jacobian); | 
|  | pre.Update(*jacobian, diagonal.data()); | 
|  |  | 
|  | // The const_cast is needed to be able to call GetCell. | 
|  | auto* m = const_cast<BlockRandomAccessDiagonalMatrix*>(&pre.matrix()); | 
|  | EXPECT_EQ(m->num_rows(), jacobian->num_cols()); | 
|  | EXPECT_EQ(m->num_cols(), jacobian->num_cols()); | 
|  |  | 
|  | const CompressedRowBlockStructure* bs = jacobian->block_structure(); | 
|  | for (int i = 0; i < bs->cols.size(); ++i) { | 
|  | const int block_size = bs->cols[i].size; | 
|  | int r, c, row_stride, col_stride; | 
|  | CellInfo* cell_info = m->GetCell(i, i, &r, &c, &row_stride, &col_stride); | 
|  | Matrix actual_block_inverse = | 
|  | MatrixRef(cell_info->values, row_stride, col_stride) | 
|  | .block(r, c, block_size, block_size); | 
|  | Matrix expected_block = hessian.block( | 
|  | bs->cols[i].position, bs->cols[i].position, block_size, block_size); | 
|  | const double residual = (actual_block_inverse * expected_block - | 
|  | Matrix::Identity(block_size, block_size)) | 
|  | .norm(); | 
|  | EXPECT_NEAR(residual, 0.0, 1e-12) << "Block: " << i; | 
|  | } | 
|  | options.num_col_blocks++; | 
|  | options.num_row_blocks++; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(CompressedRowSparseJacobiPreconditioner, _) { | 
|  | constexpr int kNumtrials = 10; | 
|  | CompressedRowSparseMatrix::RandomMatrixOptions options; | 
|  | options.num_col_blocks = 3; | 
|  | options.min_col_block_size = 1; | 
|  | options.max_col_block_size = 3; | 
|  |  | 
|  | options.num_row_blocks = 5; | 
|  | options.min_row_block_size = 1; | 
|  | options.max_row_block_size = 4; | 
|  | options.block_density = 0.25; | 
|  | std::mt19937 prng; | 
|  |  | 
|  | Preconditioner::Options preconditioner_options; | 
|  | ContextImpl context; | 
|  | preconditioner_options.context = &context; | 
|  |  | 
|  | for (int trial = 0; trial < kNumtrials; ++trial) { | 
|  | auto jacobian = | 
|  | CompressedRowSparseMatrix::CreateRandomMatrix(options, prng); | 
|  | Vector diagonal = Vector::Ones(jacobian->num_cols()); | 
|  |  | 
|  | Matrix dense_jacobian; | 
|  | jacobian->ToDenseMatrix(&dense_jacobian); | 
|  | Matrix hessian = dense_jacobian.transpose() * dense_jacobian; | 
|  | hessian.diagonal() += diagonal.array().square().matrix(); | 
|  |  | 
|  | BlockCRSJacobiPreconditioner pre(preconditioner_options, *jacobian); | 
|  | pre.Update(*jacobian, diagonal.data()); | 
|  | auto& m = pre.matrix(); | 
|  |  | 
|  | EXPECT_EQ(m.num_rows(), jacobian->num_cols()); | 
|  | EXPECT_EQ(m.num_cols(), jacobian->num_cols()); | 
|  |  | 
|  | const auto& col_blocks = jacobian->col_blocks(); | 
|  | for (int i = 0, col = 0; i < col_blocks.size(); ++i) { | 
|  | const int block_size = col_blocks[i].size; | 
|  | int idx = m.rows()[col]; | 
|  | for (int j = 0; j < block_size; ++j) { | 
|  | EXPECT_EQ(m.rows()[col + j + 1] - m.rows()[col + j], block_size); | 
|  | for (int k = 0; k < block_size; ++k, ++idx) { | 
|  | EXPECT_EQ(m.cols()[idx], col + k); | 
|  | } | 
|  | } | 
|  |  | 
|  | ConstMatrixRef actual_block_inverse( | 
|  | m.values() + m.rows()[col], block_size, block_size); | 
|  | Matrix expected_block = hessian.block(col, col, block_size, block_size); | 
|  | const double residual = (actual_block_inverse * expected_block - | 
|  | Matrix::Identity(block_size, block_size)) | 
|  | .norm(); | 
|  | EXPECT_NEAR(residual, 0.0, 1e-12) << "Block: " << i; | 
|  | col += block_size; | 
|  | } | 
|  | options.num_col_blocks++; | 
|  | options.num_row_blocks++; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |