|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/compressed_col_sparse_matrix_utils.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <numeric> | 
|  | #include <vector> | 
|  |  | 
|  | #include "Eigen/SparseCore" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/triplet_sparse_matrix.h" | 
|  | #include "glog/logging.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | TEST(_, BlockPermutationToScalarPermutation) { | 
|  | //  Block structure | 
|  | //  0  --1-  ---2---  ---3---  4 | 
|  | // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] | 
|  | std::vector<Block> blocks{{1, 0}, {2, 1}, {3, 3}, {3, 6}, {1, 9}}; | 
|  | // Block ordering | 
|  | // [1, 0, 2, 4, 5] | 
|  | std::vector<int> block_ordering{{1, 0, 2, 4, 3}}; | 
|  |  | 
|  | // Expected ordering | 
|  | // [1, 2, 0, 3, 4, 5, 9, 6, 7, 8] | 
|  | std::vector<int> expected_scalar_ordering{{1, 2, 0, 3, 4, 5, 9, 6, 7, 8}}; | 
|  |  | 
|  | std::vector<int> scalar_ordering; | 
|  | BlockOrderingToScalarOrdering(blocks, block_ordering, &scalar_ordering); | 
|  | EXPECT_EQ(scalar_ordering.size(), expected_scalar_ordering.size()); | 
|  | for (int i = 0; i < expected_scalar_ordering.size(); ++i) { | 
|  | EXPECT_EQ(scalar_ordering[i], expected_scalar_ordering[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void FillBlock(const std::vector<Block>& row_blocks, | 
|  | const std::vector<Block>& col_blocks, | 
|  | const int row_block_id, | 
|  | const int col_block_id, | 
|  | std::vector<Eigen::Triplet<double>>* triplets) { | 
|  | for (int r = 0; r < row_blocks[row_block_id].size; ++r) { | 
|  | for (int c = 0; c < col_blocks[col_block_id].size; ++c) { | 
|  | triplets->push_back( | 
|  | Eigen::Triplet<double>(row_blocks[row_block_id].position + r, | 
|  | col_blocks[col_block_id].position + c, | 
|  | 1.0)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(_, ScalarMatrixToBlockMatrix) { | 
|  | // Block sparsity. | 
|  | // | 
|  | //     [1 2 3 2] | 
|  | // [1]  x   x | 
|  | // [2]    x   x | 
|  | // [2]  x x | 
|  | // num_nonzeros = 1 + 3 + 4 + 4 + 1 + 2 = 15 | 
|  |  | 
|  | std::vector<Block> col_blocks{{1, 0}, {2, 1}, {3, 3}, {2, 5}}; | 
|  | const int num_cols = NumScalarEntries(col_blocks); | 
|  |  | 
|  | std::vector<Block> row_blocks{{1, 0}, {2, 1}, {2, 3}}; | 
|  | const int num_rows = NumScalarEntries(row_blocks); | 
|  |  | 
|  | std::vector<Eigen::Triplet<double>> triplets; | 
|  | FillBlock(row_blocks, col_blocks, 0, 0, &triplets); | 
|  | FillBlock(row_blocks, col_blocks, 2, 0, &triplets); | 
|  | FillBlock(row_blocks, col_blocks, 1, 1, &triplets); | 
|  | FillBlock(row_blocks, col_blocks, 2, 1, &triplets); | 
|  | FillBlock(row_blocks, col_blocks, 0, 2, &triplets); | 
|  | FillBlock(row_blocks, col_blocks, 1, 3, &triplets); | 
|  | Eigen::SparseMatrix<double> sparse_matrix(num_rows, num_cols); | 
|  | sparse_matrix.setFromTriplets(triplets.begin(), triplets.end()); | 
|  |  | 
|  | const std::vector<int> expected_compressed_block_rows{{0, 2, 1, 2, 0, 1}}; | 
|  | const std::vector<int> expected_compressed_block_cols{{0, 2, 4, 5, 6}}; | 
|  |  | 
|  | std::vector<int> compressed_block_rows; | 
|  | std::vector<int> compressed_block_cols; | 
|  | CompressedColumnScalarMatrixToBlockMatrix(sparse_matrix.innerIndexPtr(), | 
|  | sparse_matrix.outerIndexPtr(), | 
|  | row_blocks, | 
|  | col_blocks, | 
|  | &compressed_block_rows, | 
|  | &compressed_block_cols); | 
|  |  | 
|  | EXPECT_EQ(compressed_block_rows, expected_compressed_block_rows); | 
|  | EXPECT_EQ(compressed_block_cols, expected_compressed_block_cols); | 
|  | } | 
|  |  | 
|  | class SolveUpperTriangularTest : public ::testing::Test { | 
|  | protected: | 
|  | const std::vector<int>& cols() const { return cols_; } | 
|  | const std::vector<int>& rows() const { return rows_; } | 
|  | const std::vector<double>& values() const { return values_; } | 
|  |  | 
|  | private: | 
|  | const std::vector<int> cols_ = {0, 1, 2, 4, 7}; | 
|  | const std::vector<int> rows_ = {0, 1, 1, 2, 0, 1, 3}; | 
|  | const std::vector<double> values_ = { | 
|  | 0.50754, 0.80483, 0.14120, 0.3, 0.77696, 0.41860, 0.88979}; | 
|  | }; | 
|  |  | 
|  | TEST_F(SolveUpperTriangularTest, SolveInPlace) { | 
|  | double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; | 
|  | const double expected[] = {-1.4706, -1.0962, 6.6667, 2.2477}; | 
|  |  | 
|  | SolveUpperTriangularInPlace<int>(cols().size() - 1, | 
|  | rows().data(), | 
|  | cols().data(), | 
|  | values().data(), | 
|  | rhs_and_solution); | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(SolveUpperTriangularTest, TransposeSolveInPlace) { | 
|  | double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0}; | 
|  | double expected[] = {1.970288, 1.242498, 6.081864, -0.057255}; | 
|  |  | 
|  | SolveUpperTriangularTransposeInPlace<int>(cols().size() - 1, | 
|  | rows().data(), | 
|  | cols().data(), | 
|  | values().data(), | 
|  | rhs_and_solution); | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(SolveUpperTriangularTest, RTRSolveWithSparseRHS) { | 
|  | double solution[4]; | 
|  | // clang-format off | 
|  | double expected[] = { 6.8420e+00,   1.0057e+00,  -1.4907e-16,  -1.9335e+00, | 
|  | 1.0057e+00,   2.2275e+00,  -1.9493e+00,  -6.5693e-01, | 
|  | -1.4907e-16,  -1.9493e+00,   1.1111e+01,   9.7381e-17, | 
|  | -1.9335e+00,  -6.5693e-01,   9.7381e-17,   1.2631e+00 }; | 
|  | // clang-format on | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | SolveRTRWithSparseRHS<int>(cols().size() - 1, | 
|  | rows().data(), | 
|  | cols().data(), | 
|  | values().data(), | 
|  | i, | 
|  | solution); | 
|  | for (int j = 0; j < 4; ++j) { | 
|  | EXPECT_NEAR(solution[j], expected[4 * i + j], 1e-3) << i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |