| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2019 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 |  | 
 | #ifndef CERES_INTERNAL_PARAMETER_BLOCK_H_ | 
 | #define CERES_INTERNAL_PARAMETER_BLOCK_H_ | 
 |  | 
 | #include <algorithm> | 
 | #include <cstdint> | 
 | #include <cstdlib> | 
 | #include <limits> | 
 | #include <memory> | 
 | #include <string> | 
 | #include <unordered_set> | 
 |  | 
 | #include "ceres/array_utils.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/internal/port.h" | 
 | #include "ceres/local_parameterization.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "glog/logging.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | class ProblemImpl; | 
 | class ResidualBlock; | 
 |  | 
 | // The parameter block encodes the location of the user's original value, and | 
 | // also the "current state" of the parameter. The evaluator uses whatever is in | 
 | // the current state of the parameter when evaluating. This is inlined since the | 
 | // methods are performance sensitive. | 
 | // | 
 | // The class is not thread-safe, unless only const methods are called. The | 
 | // parameter block may also hold a pointer to a local parameterization; the | 
 | // parameter block does not take ownership of this pointer, so the user is | 
 | // responsible for the proper disposal of the local parameterization. | 
 | class ParameterBlock { | 
 |  public: | 
 |   typedef std::unordered_set<ResidualBlock*> ResidualBlockSet; | 
 |  | 
 |   // Create a parameter block with the user state, size, and index specified. | 
 |   // The size is the size of the parameter block and the index is the position | 
 |   // of the parameter block inside a Program (if any). | 
 |   ParameterBlock(double* user_state, int size, int index) | 
 |       : user_state_(user_state), | 
 |         size_(size), | 
 |         state_(user_state), | 
 |         index_(index) {} | 
 |  | 
 |   ParameterBlock(double* user_state, | 
 |                  int size, | 
 |                  int index, | 
 |                  LocalParameterization* local_parameterization) | 
 |       : user_state_(user_state), | 
 |         size_(size), | 
 |         state_(user_state), | 
 |         index_(index) { | 
 |     if (local_parameterization != nullptr) { | 
 |       SetParameterization(local_parameterization); | 
 |     } | 
 |   } | 
 |  | 
 |   // The size of the parameter block. | 
 |   int Size() const { return size_; } | 
 |  | 
 |   // Manipulate the parameter state. | 
 |   bool SetState(const double* x) { | 
 |     CHECK(x != nullptr) << "Tried to set the state of constant parameter " | 
 |                         << "with user location " << user_state_; | 
 |     CHECK(!IsConstant()) << "Tried to set the state of constant parameter " | 
 |                          << "with user location " << user_state_; | 
 |  | 
 |     state_ = x; | 
 |     return UpdateLocalParameterizationJacobian(); | 
 |   } | 
 |  | 
 |   // Copy the current parameter state out to x. This is "GetState()" rather than | 
 |   // simply "state()" since it is actively copying the data into the passed | 
 |   // pointer. | 
 |   void GetState(double* x) const { | 
 |     if (x != state_) { | 
 |       std::copy(state_, state_ + size_, x); | 
 |     } | 
 |   } | 
 |  | 
 |   // Direct pointers to the current state. | 
 |   const double* state() const { return state_; } | 
 |   const double* user_state() const { return user_state_; } | 
 |   double* mutable_user_state() { return user_state_; } | 
 |   const LocalParameterization* local_parameterization() const { | 
 |     return local_parameterization_; | 
 |   } | 
 |   LocalParameterization* mutable_local_parameterization() { | 
 |     return local_parameterization_; | 
 |   } | 
 |  | 
 |   // Set this parameter block to vary or not. | 
 |   void SetConstant() { is_set_constant_ = true; } | 
 |   void SetVarying() { is_set_constant_ = false; } | 
 |   bool IsConstant() const { return (is_set_constant_ || LocalSize() == 0); } | 
 |  | 
 |   double UpperBound(int index) const { | 
 |     return (upper_bounds_ ? upper_bounds_[index] | 
 |                           : std::numeric_limits<double>::max()); | 
 |   } | 
 |  | 
 |   double LowerBound(int index) const { | 
 |     return (lower_bounds_ ? lower_bounds_[index] | 
 |                           : -std::numeric_limits<double>::max()); | 
 |   } | 
 |  | 
 |   bool IsUpperBounded() const { return (upper_bounds_ == nullptr); } | 
 |   bool IsLowerBounded() const { return (lower_bounds_ == nullptr); } | 
 |  | 
 |   // This parameter block's index in an array. | 
 |   int index() const { return index_; } | 
 |   void set_index(int index) { index_ = index; } | 
 |  | 
 |   // This parameter offset inside a larger state vector. | 
 |   int state_offset() const { return state_offset_; } | 
 |   void set_state_offset(int state_offset) { state_offset_ = state_offset; } | 
 |  | 
 |   // This parameter offset inside a larger delta vector. | 
 |   int delta_offset() const { return delta_offset_; } | 
 |   void set_delta_offset(int delta_offset) { delta_offset_ = delta_offset; } | 
 |  | 
 |   // Methods relating to the parameter block's parameterization. | 
 |  | 
 |   // The local to global jacobian. Returns nullptr if there is no local | 
 |   // parameterization for this parameter block. The returned matrix is row-major | 
 |   // and has Size() rows and  LocalSize() columns. | 
 |   const double* LocalParameterizationJacobian() const { | 
 |     return local_parameterization_jacobian_.get(); | 
 |   } | 
 |  | 
 |   int LocalSize() const { | 
 |     return (local_parameterization_ == nullptr) | 
 |                ? size_ | 
 |                : local_parameterization_->LocalSize(); | 
 |   } | 
 |  | 
 |   // Set the parameterization. The parameter block does not take | 
 |   // ownership of the parameterization. | 
 |   void SetParameterization(LocalParameterization* new_parameterization) { | 
 |     // Nothing to do if the new parameterization is the same as the | 
 |     // old parameterization. | 
 |     if (new_parameterization == local_parameterization_) { | 
 |       return; | 
 |     } | 
 |  | 
 |     if (new_parameterization == nullptr) { | 
 |       local_parameterization_ = nullptr; | 
 |       return; | 
 |     } | 
 |  | 
 |     CHECK(new_parameterization->GlobalSize() == size_) | 
 |         << "Invalid parameterization for parameter block. The parameter block " | 
 |         << "has size " << size_ << " while the parameterization has a global " | 
 |         << "size of " << new_parameterization->GlobalSize() << ". Did you " | 
 |         << "accidentally use the wrong parameter block or parameterization?"; | 
 |  | 
 |     CHECK_GE(new_parameterization->LocalSize(), 0) | 
 |         << "Invalid parameterization. Parameterizations must have a " | 
 |         << "non-negative dimensional tangent space."; | 
 |  | 
 |     local_parameterization_ = new_parameterization; | 
 |     local_parameterization_jacobian_.reset( | 
 |         new double[local_parameterization_->GlobalSize() * | 
 |                    local_parameterization_->LocalSize()]); | 
 |     CHECK(UpdateLocalParameterizationJacobian()) | 
 |         << "Local parameterization Jacobian computation failed for x: " | 
 |         << ConstVectorRef(state_, Size()).transpose(); | 
 |   } | 
 |  | 
 |   void SetUpperBound(int index, double upper_bound) { | 
 |     CHECK_LT(index, size_); | 
 |  | 
 |     if (upper_bound >= std::numeric_limits<double>::max() && !upper_bounds_) { | 
 |       return; | 
 |     } | 
 |  | 
 |     if (!upper_bounds_) { | 
 |       upper_bounds_.reset(new double[size_]); | 
 |       std::fill(upper_bounds_.get(), | 
 |                 upper_bounds_.get() + size_, | 
 |                 std::numeric_limits<double>::max()); | 
 |     } | 
 |  | 
 |     upper_bounds_[index] = upper_bound; | 
 |   } | 
 |  | 
 |   void SetLowerBound(int index, double lower_bound) { | 
 |     CHECK_LT(index, size_); | 
 |  | 
 |     if (lower_bound <= -std::numeric_limits<double>::max() && !lower_bounds_) { | 
 |       return; | 
 |     } | 
 |  | 
 |     if (!lower_bounds_) { | 
 |       lower_bounds_.reset(new double[size_]); | 
 |       std::fill(lower_bounds_.get(), | 
 |                 lower_bounds_.get() + size_, | 
 |                 -std::numeric_limits<double>::max()); | 
 |     } | 
 |  | 
 |     lower_bounds_[index] = lower_bound; | 
 |   } | 
 |  | 
 |   // Generalization of the addition operation. This is the same as | 
 |   // LocalParameterization::Plus() followed by projection onto the | 
 |   // hyper cube implied by the bounds constraints. | 
 |   bool Plus(const double* x, const double* delta, double* x_plus_delta) { | 
 |     if (local_parameterization_ != nullptr) { | 
 |       if (!local_parameterization_->Plus(x, delta, x_plus_delta)) { | 
 |         return false; | 
 |       } | 
 |     } else { | 
 |       VectorRef(x_plus_delta, size_) = | 
 |           ConstVectorRef(x, size_) + ConstVectorRef(delta, size_); | 
 |     } | 
 |  | 
 |     // Project onto the box constraints. | 
 |     if (lower_bounds_.get() != nullptr) { | 
 |       for (int i = 0; i < size_; ++i) { | 
 |         x_plus_delta[i] = std::max(x_plus_delta[i], lower_bounds_[i]); | 
 |       } | 
 |     } | 
 |  | 
 |     if (upper_bounds_.get() != nullptr) { | 
 |       for (int i = 0; i < size_; ++i) { | 
 |         x_plus_delta[i] = std::min(x_plus_delta[i], upper_bounds_[i]); | 
 |       } | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   std::string ToString() const { | 
 |     return StringPrintf( | 
 |         "{ this=%p, user_state=%p, state=%p, size=%d, " | 
 |         "constant=%d, index=%d, state_offset=%d, " | 
 |         "delta_offset=%d }", | 
 |         this, | 
 |         user_state_, | 
 |         state_, | 
 |         size_, | 
 |         is_set_constant_, | 
 |         index_, | 
 |         state_offset_, | 
 |         delta_offset_); | 
 |   } | 
 |  | 
 |   void EnableResidualBlockDependencies() { | 
 |     CHECK(residual_blocks_.get() == nullptr) | 
 |         << "Ceres bug: There is already a residual block collection " | 
 |         << "for parameter block: " << ToString(); | 
 |     residual_blocks_.reset(new ResidualBlockSet); | 
 |   } | 
 |  | 
 |   void AddResidualBlock(ResidualBlock* residual_block) { | 
 |     CHECK(residual_blocks_.get() != nullptr) | 
 |         << "Ceres bug: The residual block collection is null for parameter " | 
 |         << "block: " << ToString(); | 
 |     residual_blocks_->insert(residual_block); | 
 |   } | 
 |  | 
 |   void RemoveResidualBlock(ResidualBlock* residual_block) { | 
 |     CHECK(residual_blocks_.get() != nullptr) | 
 |         << "Ceres bug: The residual block collection is null for parameter " | 
 |         << "block: " << ToString(); | 
 |     CHECK(residual_blocks_->find(residual_block) != residual_blocks_->end()) | 
 |         << "Ceres bug: Missing residual for parameter block: " << ToString(); | 
 |     residual_blocks_->erase(residual_block); | 
 |   } | 
 |  | 
 |   // This is only intended for iterating; perhaps this should only expose | 
 |   // .begin() and .end(). | 
 |   ResidualBlockSet* mutable_residual_blocks() { return residual_blocks_.get(); } | 
 |  | 
 |   double LowerBoundForParameter(int index) const { | 
 |     if (lower_bounds_.get() == nullptr) { | 
 |       return -std::numeric_limits<double>::max(); | 
 |     } else { | 
 |       return lower_bounds_[index]; | 
 |     } | 
 |   } | 
 |  | 
 |   double UpperBoundForParameter(int index) const { | 
 |     if (upper_bounds_.get() == nullptr) { | 
 |       return std::numeric_limits<double>::max(); | 
 |     } else { | 
 |       return upper_bounds_[index]; | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   bool UpdateLocalParameterizationJacobian() { | 
 |     if (local_parameterization_ == nullptr) { | 
 |       return true; | 
 |     } | 
 |  | 
 |     // Update the local to global Jacobian. In some cases this is | 
 |     // wasted effort; if this is a bottleneck, we will find a solution | 
 |     // at that time. | 
 |  | 
 |     const int jacobian_size = Size() * LocalSize(); | 
 |     InvalidateArray(jacobian_size, local_parameterization_jacobian_.get()); | 
 |     if (!local_parameterization_->ComputeJacobian( | 
 |             state_, local_parameterization_jacobian_.get())) { | 
 |       LOG(WARNING) << "Local parameterization Jacobian computation failed" | 
 |                       "for x: " | 
 |                    << ConstVectorRef(state_, Size()).transpose(); | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (!IsArrayValid(jacobian_size, local_parameterization_jacobian_.get())) { | 
 |       LOG(WARNING) << "Local parameterization Jacobian computation returned" | 
 |                    << "an invalid matrix for x: " | 
 |                    << ConstVectorRef(state_, Size()).transpose() | 
 |                    << "\n Jacobian matrix : " | 
 |                    << ConstMatrixRef(local_parameterization_jacobian_.get(), | 
 |                                      Size(), | 
 |                                      LocalSize()); | 
 |       return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   double* user_state_ = nullptr; | 
 |   int size_ = -1; | 
 |   bool is_set_constant_ = false; | 
 |   LocalParameterization* local_parameterization_ = nullptr; | 
 |  | 
 |   // The "state" of the parameter. These fields are only needed while the | 
 |   // solver is running. While at first glance using mutable is a bad idea, this | 
 |   // ends up simplifying the internals of Ceres enough to justify the potential | 
 |   // pitfalls of using "mutable." | 
 |   mutable const double* state_ = nullptr; | 
 |   mutable std::unique_ptr<double[]> local_parameterization_jacobian_; | 
 |  | 
 |   // The index of the parameter. This is used by various other parts of Ceres to | 
 |   // permit switching from a ParameterBlock* to an index in another array. | 
 |   int index_ = -1; | 
 |  | 
 |   // The offset of this parameter block inside a larger state vector. | 
 |   int state_offset_ = -1; | 
 |  | 
 |   // The offset of this parameter block inside a larger delta vector. | 
 |   int delta_offset_ = -1; | 
 |  | 
 |   // If non-null, contains the residual blocks this parameter block is in. | 
 |   std::unique_ptr<ResidualBlockSet> residual_blocks_; | 
 |  | 
 |   // Upper and lower bounds for the parameter block.  SetUpperBound | 
 |   // and SetLowerBound lazily initialize the upper_bounds_ and | 
 |   // lower_bounds_ arrays. If they are never called, then memory for | 
 |   // these arrays is never allocated. Thus for problems where there | 
 |   // are no bounds, or only one sided bounds we do not pay the cost of | 
 |   // allocating memory for the inactive bounds constraints. | 
 |   // | 
 |   // Upon initialization these arrays are initialized to | 
 |   // std::numeric_limits<double>::max() and | 
 |   // -std::numeric_limits<double>::max() respectively which correspond | 
 |   // to the parameter block being unconstrained. | 
 |   std::unique_ptr<double[]> upper_bounds_; | 
 |   std::unique_ptr<double[]> lower_bounds_; | 
 |  | 
 |   // Necessary so ProblemImpl can clean up the parameterizations. | 
 |   friend class ProblemImpl; | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres | 
 |  | 
 | #endif  // CERES_INTERNAL_PARAMETER_BLOCK_H_ |