| // Ceres Solver - A fast non-linear least squares minimizer |
| // Copyright 2015 Google Inc. All rights reserved. |
| // http://ceres-solver.org/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of Google Inc. nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| // POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: sameeragarwal@google.com (Sameer Agarwal) |
| |
| #include "ceres/dense_qr_solver.h" |
| |
| #include <cstddef> |
| #include "Eigen/Dense" |
| #include "ceres/dense_sparse_matrix.h" |
| #include "ceres/internal/eigen.h" |
| #include "ceres/lapack.h" |
| #include "ceres/linear_solver.h" |
| #include "ceres/types.h" |
| #include "ceres/wall_time.h" |
| |
| namespace ceres { |
| namespace internal { |
| |
| DenseQRSolver::DenseQRSolver(const LinearSolver::Options& options) |
| : options_(options) { |
| work_.resize(1); |
| } |
| |
| LinearSolver::Summary DenseQRSolver::SolveImpl( |
| DenseSparseMatrix* A, |
| const double* b, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double* x) { |
| if (options_.dense_linear_algebra_library_type == EIGEN) { |
| return SolveUsingEigen(A, b, per_solve_options, x); |
| } else { |
| return SolveUsingLAPACK(A, b, per_solve_options, x); |
| } |
| } |
| |
| LinearSolver::Summary DenseQRSolver::SolveUsingLAPACK( |
| DenseSparseMatrix* A, |
| const double* b, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double* x) { |
| EventLogger event_logger("DenseQRSolver::Solve"); |
| |
| const int num_rows = A->num_rows(); |
| const int num_cols = A->num_cols(); |
| |
| if (per_solve_options.D != NULL) { |
| // Temporarily append a diagonal block to the A matrix, but undo |
| // it before returning the matrix to the user. |
| A->AppendDiagonal(per_solve_options.D); |
| } |
| |
| // TODO(sameeragarwal): Since we are copying anyways, the diagonal |
| // can be appended to the matrix instead of doing it on A. |
| lhs_ = A->matrix(); |
| |
| if (per_solve_options.D != NULL) { |
| // Undo the modifications to the matrix A. |
| A->RemoveDiagonal(); |
| } |
| |
| // rhs = [b;0] to account for the additional rows in the lhs. |
| if (rhs_.rows() != lhs_.rows()) { |
| rhs_.resize(lhs_.rows()); |
| } |
| rhs_.setZero(); |
| rhs_.head(num_rows) = ConstVectorRef(b, num_rows); |
| |
| if (work_.rows() == 1) { |
| const int work_size = |
| LAPACK::EstimateWorkSizeForQR(lhs_.rows(), lhs_.cols()); |
| VLOG(3) << "Working memory for Dense QR factorization: " |
| << work_size * sizeof(double); |
| work_.resize(work_size); |
| } |
| |
| LinearSolver::Summary summary; |
| summary.num_iterations = 1; |
| summary.termination_type = LAPACK::SolveInPlaceUsingQR(lhs_.rows(), |
| lhs_.cols(), |
| lhs_.data(), |
| work_.rows(), |
| work_.data(), |
| rhs_.data(), |
| &summary.message); |
| event_logger.AddEvent("Solve"); |
| if (summary.termination_type == LINEAR_SOLVER_SUCCESS) { |
| VectorRef(x, num_cols) = rhs_.head(num_cols); |
| } |
| |
| event_logger.AddEvent("TearDown"); |
| return summary; |
| } |
| |
| LinearSolver::Summary DenseQRSolver::SolveUsingEigen( |
| DenseSparseMatrix* A, |
| const double* b, |
| const LinearSolver::PerSolveOptions& per_solve_options, |
| double* x) { |
| EventLogger event_logger("DenseQRSolver::Solve"); |
| |
| const int num_rows = A->num_rows(); |
| const int num_cols = A->num_cols(); |
| |
| if (per_solve_options.D != NULL) { |
| // Temporarily append a diagonal block to the A matrix, but undo |
| // it before returning the matrix to the user. |
| A->AppendDiagonal(per_solve_options.D); |
| } |
| |
| // rhs = [b;0] to account for the additional rows in the lhs. |
| const int augmented_num_rows = |
| num_rows + ((per_solve_options.D != NULL) ? num_cols : 0); |
| if (rhs_.rows() != augmented_num_rows) { |
| rhs_.resize(augmented_num_rows); |
| rhs_.setZero(); |
| } |
| rhs_.head(num_rows) = ConstVectorRef(b, num_rows); |
| event_logger.AddEvent("Setup"); |
| |
| // Solve the system. |
| VectorRef(x, num_cols) = A->matrix().householderQr().solve(rhs_); |
| event_logger.AddEvent("Solve"); |
| |
| if (per_solve_options.D != NULL) { |
| // Undo the modifications to the matrix A. |
| A->RemoveDiagonal(); |
| } |
| |
| // We always succeed, since the QR solver returns the best solution |
| // it can. It is the job of the caller to determine if the solution |
| // is good enough or not. |
| LinearSolver::Summary summary; |
| summary.num_iterations = 1; |
| summary.termination_type = LINEAR_SOLVER_SUCCESS; |
| summary.message = "Success."; |
| |
| event_logger.AddEvent("TearDown"); |
| return summary; |
| } |
| |
| } // namespace internal |
| } // namespace ceres |