|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2019 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: mierle@gmail.com (Keir Mierle) | 
|  | // | 
|  | // WARNING WARNING WARNING | 
|  | // WARNING WARNING WARNING  Tiny solver is experimental and will change. | 
|  | // WARNING WARNING WARNING | 
|  |  | 
|  | #ifndef CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_ | 
|  | #define CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_ | 
|  |  | 
|  | #include <memory> | 
|  | #include <type_traits> | 
|  |  | 
|  | #include "Eigen/Core" | 
|  | #include "ceres/jet.h" | 
|  | #include "ceres/types.h"  // For kImpossibleValue. | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | // An adapter around autodiff-style CostFunctors to enable easier use of | 
|  | // TinySolver. See the example below showing how to use it: | 
|  | // | 
|  | //   // Example for cost functor with static residual size. | 
|  | //   // Same as an autodiff cost functor, but taking only 1 parameter. | 
|  | //   struct MyFunctor { | 
|  | //     template<typename T> | 
|  | //     bool operator()(const T* const parameters, T* residuals) const { | 
|  | //       const T& x = parameters[0]; | 
|  | //       const T& y = parameters[1]; | 
|  | //       const T& z = parameters[2]; | 
|  | //       residuals[0] = x + 2.*y + 4.*z; | 
|  | //       residuals[1] = y * z; | 
|  | //       return true; | 
|  | //     } | 
|  | //   }; | 
|  | // | 
|  | //   typedef TinySolverAutoDiffFunction<MyFunctor, 2, 3> | 
|  | //       AutoDiffFunction; | 
|  | // | 
|  | //   MyFunctor my_functor; | 
|  | //   AutoDiffFunction f(my_functor); | 
|  | // | 
|  | //   Vec3 x = ...; | 
|  | //   TinySolver<AutoDiffFunction> solver; | 
|  | //   solver.Solve(f, &x); | 
|  | // | 
|  | //   // Example for cost functor with dynamic residual size. | 
|  | //   // NumResiduals() supplies dynamic size of residuals. | 
|  | //   // Same functionality as in tiny_solver.h but with autodiff. | 
|  | //   struct MyFunctorWithDynamicResiduals { | 
|  | //     int NumResiduals() const { | 
|  | //       return 2; | 
|  | //     } | 
|  | // | 
|  | //     template<typename T> | 
|  | //     bool operator()(const T* const parameters, T* residuals) const { | 
|  | //       const T& x = parameters[0]; | 
|  | //       const T& y = parameters[1]; | 
|  | //       const T& z = parameters[2]; | 
|  | //       residuals[0] = x + static_cast<T>(2.)*y + static_cast<T>(4.)*z; | 
|  | //       residuals[1] = y * z; | 
|  | //       return true; | 
|  | //     } | 
|  | //   }; | 
|  | // | 
|  | //   typedef TinySolverAutoDiffFunction<MyFunctorWithDynamicResiduals, | 
|  | //                                      Eigen::Dynamic, | 
|  | //                                      3> | 
|  | //       AutoDiffFunctionWithDynamicResiduals; | 
|  | // | 
|  | //   MyFunctorWithDynamicResiduals my_functor_dyn; | 
|  | //   AutoDiffFunctionWithDynamicResiduals f(my_functor_dyn); | 
|  | // | 
|  | //   Vec3 x = ...; | 
|  | //   TinySolver<AutoDiffFunctionWithDynamicResiduals> solver; | 
|  | //   solver.Solve(f, &x); | 
|  | // | 
|  | // WARNING: The cost function adapter is not thread safe. | 
|  | template <typename CostFunctor, | 
|  | int kNumResiduals, | 
|  | int kNumParameters, | 
|  | typename T = double> | 
|  | class TinySolverAutoDiffFunction { | 
|  | public: | 
|  | // This class needs to have an Eigen aligned operator new as it contains | 
|  | // as a member a Jet type, which itself has a fixed-size Eigen type as member. | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | 
|  |  | 
|  | explicit TinySolverAutoDiffFunction(const CostFunctor& cost_functor) | 
|  | : cost_functor_(cost_functor) { | 
|  | Initialize<kNumResiduals>(cost_functor); | 
|  | } | 
|  |  | 
|  | using Scalar = T; | 
|  | enum { | 
|  | NUM_PARAMETERS = kNumParameters, | 
|  | NUM_RESIDUALS = kNumResiduals, | 
|  | }; | 
|  |  | 
|  | // This is similar to AutoDifferentiate(), but since there is only one | 
|  | // parameter block it is easier to inline to avoid overhead. | 
|  | bool operator()(const T* parameters, T* residuals, T* jacobian) const { | 
|  | if (jacobian == nullptr) { | 
|  | // No jacobian requested, so just directly call the cost function with | 
|  | // doubles, skipping jets and derivatives. | 
|  | return cost_functor_(parameters, residuals); | 
|  | } | 
|  | // Initialize the input jets with passed parameters. | 
|  | for (int i = 0; i < kNumParameters; ++i) { | 
|  | jet_parameters_[i].a = parameters[i];  // Scalar part. | 
|  | jet_parameters_[i].v.setZero();        // Derivative part. | 
|  | jet_parameters_[i].v[i] = T(1.0); | 
|  | } | 
|  |  | 
|  | // Initialize the output jets such that we can detect user errors. | 
|  | for (int i = 0; i < num_residuals_; ++i) { | 
|  | jet_residuals_[i].a = kImpossibleValue; | 
|  | jet_residuals_[i].v.setConstant(kImpossibleValue); | 
|  | } | 
|  |  | 
|  | // Execute the cost function, but with jets to find the derivative. | 
|  | if (!cost_functor_(jet_parameters_, jet_residuals_.data())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Copy the jacobian out of the derivative part of the residual jets. | 
|  | Eigen::Map<Eigen::Matrix<T, kNumResiduals, kNumParameters>> jacobian_matrix( | 
|  | jacobian, num_residuals_, kNumParameters); | 
|  | for (int r = 0; r < num_residuals_; ++r) { | 
|  | residuals[r] = jet_residuals_[r].a; | 
|  | // Note that while this looks like a fast vectorized write, in practice it | 
|  | // unfortunately thrashes the cache since the writes to the column-major | 
|  | // jacobian are strided (e.g. rows are non-contiguous). | 
|  | jacobian_matrix.row(r) = jet_residuals_[r].v; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int NumResiduals() const { | 
|  | return num_residuals_;  // Set by Initialize. | 
|  | } | 
|  |  | 
|  | private: | 
|  | const CostFunctor& cost_functor_; | 
|  |  | 
|  | // The number of residuals at runtime. | 
|  | // This will be overridden if NUM_RESIDUALS == Eigen::Dynamic. | 
|  | int num_residuals_ = kNumResiduals; | 
|  |  | 
|  | // To evaluate the cost function with jets, temporary storage is needed. These | 
|  | // are the buffers that are used during evaluation; parameters for the input, | 
|  | // and jet_residuals_ are where the final cost and derivatives end up. | 
|  | // | 
|  | // Since this buffer is used for evaluation, the adapter is not thread safe. | 
|  | using JetType = Jet<T, kNumParameters>; | 
|  | mutable JetType jet_parameters_[kNumParameters]; | 
|  | // Eigen::Matrix serves as static or dynamic container. | 
|  | mutable Eigen::Matrix<JetType, kNumResiduals, 1> jet_residuals_; | 
|  |  | 
|  | // The number of residuals is dynamically sized and the number of | 
|  | // parameters is statically sized. | 
|  | template <int R> | 
|  | typename std::enable_if<(R == Eigen::Dynamic), void>::type Initialize( | 
|  | const CostFunctor& function) { | 
|  | jet_residuals_.resize(function.NumResiduals()); | 
|  | num_residuals_ = function.NumResiduals(); | 
|  | } | 
|  |  | 
|  | // The number of parameters and residuals are statically sized. | 
|  | template <int R> | 
|  | typename std::enable_if<(R != Eigen::Dynamic), void>::type Initialize( | 
|  | const CostFunctor& /* function */) { | 
|  | num_residuals_ = kNumResiduals; | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_ |