| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2017 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/eigensparse.h" | 
 |  | 
 | #include <memory> | 
 |  | 
 | #ifdef CERES_USE_EIGEN_SPARSE | 
 |  | 
 | #include <sstream> | 
 |  | 
 | #ifndef CERES_NO_EIGEN_METIS | 
 | #include <iostream>  // This is needed because MetisSupport depends on iostream. | 
 |  | 
 | #include "Eigen/MetisSupport" | 
 | #endif | 
 |  | 
 | #include "Eigen/SparseCholesky" | 
 | #include "Eigen/SparseCore" | 
 | #include "ceres/compressed_row_sparse_matrix.h" | 
 | #include "ceres/linear_solver.h" | 
 |  | 
 | namespace ceres::internal { | 
 |  | 
 | // TODO(sameeragarwal): Use enable_if to clean up the implementations | 
 | // for when Scalar == double. | 
 | template <typename Solver> | 
 | class EigenSparseCholeskyTemplate final : public SparseCholesky { | 
 |  public: | 
 |   EigenSparseCholeskyTemplate() = default; | 
 |   CompressedRowSparseMatrix::StorageType StorageType() const final { | 
 |     return CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR; | 
 |   } | 
 |  | 
 |   LinearSolverTerminationType Factorize( | 
 |       const Eigen::SparseMatrix<typename Solver::Scalar>& lhs, | 
 |       std::string* message) { | 
 |     if (!analyzed_) { | 
 |       solver_.analyzePattern(lhs); | 
 |  | 
 |       if (VLOG_IS_ON(2)) { | 
 |         std::stringstream ss; | 
 |         solver_.dumpMemory(ss); | 
 |         VLOG(2) << "Symbolic Analysis\n" << ss.str(); | 
 |       } | 
 |  | 
 |       if (solver_.info() != Eigen::Success) { | 
 |         *message = "Eigen failure. Unable to find symbolic factorization."; | 
 |         return LinearSolverTerminationType::FATAL_ERROR; | 
 |       } | 
 |  | 
 |       analyzed_ = true; | 
 |     } | 
 |  | 
 |     solver_.factorize(lhs); | 
 |     if (solver_.info() != Eigen::Success) { | 
 |       *message = "Eigen failure. Unable to find numeric factorization."; | 
 |       return LinearSolverTerminationType::FAILURE; | 
 |     } | 
 |     return LinearSolverTerminationType::SUCCESS; | 
 |   } | 
 |  | 
 |   LinearSolverTerminationType Solve(const double* rhs_ptr, | 
 |                                     double* solution_ptr, | 
 |                                     std::string* message) override { | 
 |     CHECK(analyzed_) << "Solve called without a call to Factorize first."; | 
 |  | 
 |     scalar_rhs_ = ConstVectorRef(rhs_ptr, solver_.cols()) | 
 |                       .template cast<typename Solver::Scalar>(); | 
 |  | 
 |     // The two casts are needed if the Scalar in this class is not | 
 |     // double. For code simplicity we are going to assume that Eigen | 
 |     // is smart enough to figure out that casting a double Vector to a | 
 |     // double Vector is a straight copy. If this turns into a | 
 |     // performance bottleneck (unlikely), we can revisit this. | 
 |     scalar_solution_ = solver_.solve(scalar_rhs_); | 
 |     VectorRef(solution_ptr, solver_.cols()) = | 
 |         scalar_solution_.template cast<double>(); | 
 |  | 
 |     if (solver_.info() != Eigen::Success) { | 
 |       *message = "Eigen failure. Unable to do triangular solve."; | 
 |       return LinearSolverTerminationType::FAILURE; | 
 |     } | 
 |     return LinearSolverTerminationType::SUCCESS; | 
 |   } | 
 |  | 
 |   LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs, | 
 |                                         std::string* message) final { | 
 |     CHECK_EQ(lhs->storage_type(), StorageType()); | 
 |  | 
 |     typename Solver::Scalar* values_ptr = nullptr; | 
 |     if (std::is_same<typename Solver::Scalar, double>::value) { | 
 |       values_ptr = | 
 |           reinterpret_cast<typename Solver::Scalar*>(lhs->mutable_values()); | 
 |     } else { | 
 |       // In the case where the scalar used in this class is not | 
 |       // double. In that case, make a copy of the values array in the | 
 |       // CompressedRowSparseMatrix and cast it to Scalar along the way. | 
 |       values_ = ConstVectorRef(lhs->values(), lhs->num_nonzeros()) | 
 |                     .cast<typename Solver::Scalar>(); | 
 |       values_ptr = values_.data(); | 
 |     } | 
 |  | 
 |     Eigen::Map<Eigen::SparseMatrix<typename Solver::Scalar, Eigen::ColMajor>> | 
 |         eigen_lhs(lhs->num_rows(), | 
 |                   lhs->num_rows(), | 
 |                   lhs->num_nonzeros(), | 
 |                   lhs->mutable_rows(), | 
 |                   lhs->mutable_cols(), | 
 |                   values_ptr); | 
 |     return Factorize(eigen_lhs, message); | 
 |   } | 
 |  | 
 |  private: | 
 |   Eigen::Matrix<typename Solver::Scalar, Eigen::Dynamic, 1> values_, | 
 |       scalar_rhs_, scalar_solution_; | 
 |   bool analyzed_{false}; | 
 |   Solver solver_; | 
 | }; | 
 |  | 
 | std::unique_ptr<SparseCholesky> EigenSparseCholesky::Create( | 
 |     const OrderingType ordering_type) { | 
 |   using WithAMDOrdering = Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>, | 
 |                                                 Eigen::Upper, | 
 |                                                 Eigen::AMDOrdering<int>>; | 
 |   using WithNaturalOrdering = | 
 |       Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>, | 
 |                             Eigen::Upper, | 
 |                             Eigen::NaturalOrdering<int>>; | 
 |  | 
 |   if (ordering_type == OrderingType::AMD) { | 
 |     return std::make_unique<EigenSparseCholeskyTemplate<WithAMDOrdering>>(); | 
 |   } else if (ordering_type == OrderingType::NESDIS) { | 
 | #ifndef CERES_NO_EIGEN_METIS | 
 |     using WithMetisOrdering = Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>, | 
 |                                                     Eigen::Upper, | 
 |                                                     Eigen::MetisOrdering<int>>; | 
 |     return std::make_unique<EigenSparseCholeskyTemplate<WithMetisOrdering>>(); | 
 | #else | 
 |     LOG(FATAL) | 
 |         << "Congratulations you have found a bug in Ceres Solver. Please " | 
 |            "report it to the Ceres Solver developers."; | 
 |     return nullptr; | 
 | #endif  // CERES_NO_EIGEN_METIS | 
 |   } | 
 |   return std::make_unique<EigenSparseCholeskyTemplate<WithNaturalOrdering>>(); | 
 | } | 
 |  | 
 | EigenSparseCholesky::~EigenSparseCholesky() = default; | 
 |  | 
 | std::unique_ptr<SparseCholesky> FloatEigenSparseCholesky::Create( | 
 |     const OrderingType ordering_type) { | 
 |   using WithAMDOrdering = Eigen::SimplicialLDLT<Eigen::SparseMatrix<float>, | 
 |                                                 Eigen::Upper, | 
 |                                                 Eigen::AMDOrdering<int>>; | 
 |   using WithNaturalOrdering = | 
 |       Eigen::SimplicialLDLT<Eigen::SparseMatrix<float>, | 
 |                             Eigen::Upper, | 
 |                             Eigen::NaturalOrdering<int>>; | 
 |   if (ordering_type == OrderingType::AMD) { | 
 |     return std::make_unique<EigenSparseCholeskyTemplate<WithAMDOrdering>>(); | 
 |   } else if (ordering_type == OrderingType::NESDIS) { | 
 | #ifndef CERES_NO_EIGEN_METIS | 
 |     using WithMetisOrdering = Eigen::SimplicialLDLT<Eigen::SparseMatrix<float>, | 
 |                                                     Eigen::Upper, | 
 |                                                     Eigen::MetisOrdering<int>>; | 
 |     return std::make_unique<EigenSparseCholeskyTemplate<WithMetisOrdering>>(); | 
 | #else | 
 |     LOG(FATAL) | 
 |         << "Congratulations you have found a bug in Ceres Solver. Please " | 
 |            "report it to the Ceres Solver developers."; | 
 |     return nullptr; | 
 | #endif  // CERES_NO_EIGEN_METIS | 
 |   } | 
 |   return std::make_unique<EigenSparseCholeskyTemplate<WithNaturalOrdering>>(); | 
 | } | 
 |  | 
 | FloatEigenSparseCholesky::~FloatEigenSparseCholesky() = default; | 
 |  | 
 | }  // namespace ceres::internal | 
 |  | 
 | #endif  // CERES_USE_EIGEN_SPARSE |