| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: keir@google.com (Keir Mierle) | 
 | // | 
 | // Tests shared across evaluators. The tests try all combinations of linear | 
 | // solver and num_eliminate_blocks (for schur-based solvers). | 
 |  | 
 | #include "ceres/evaluator.h" | 
 |  | 
 | #include <memory> | 
 |  | 
 | #include "ceres/casts.h" | 
 | #include "ceres/cost_function.h" | 
 | #include "ceres/crs_matrix.h" | 
 | #include "ceres/evaluator_test_utils.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/manifold.h" | 
 | #include "ceres/problem_impl.h" | 
 | #include "ceres/program.h" | 
 | #include "ceres/sized_cost_function.h" | 
 | #include "ceres/sparse_matrix.h" | 
 | #include "ceres/stringprintf.h" | 
 | #include "ceres/types.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | using std::string; | 
 | using std::vector; | 
 |  | 
 | // TODO(keir): Consider pushing this into a common test utils file. | 
 | template <int kFactor, int kNumResiduals, int... Ns> | 
 | class ParameterIgnoringCostFunction | 
 |     : public SizedCostFunction<kNumResiduals, Ns...> { | 
 |   using Base = SizedCostFunction<kNumResiduals, Ns...>; | 
 |  | 
 |  public: | 
 |   explicit ParameterIgnoringCostFunction(bool succeeds = true) | 
 |       : succeeds_(succeeds) {} | 
 |  | 
 |   bool Evaluate(double const* const* parameters, | 
 |                 double* residuals, | 
 |                 double** jacobians) const final { | 
 |     for (int i = 0; i < Base::num_residuals(); ++i) { | 
 |       residuals[i] = i + 1; | 
 |     } | 
 |     if (jacobians) { | 
 |       for (int k = 0; k < Base::parameter_block_sizes().size(); ++k) { | 
 |         // The jacobians here are full sized, but they are transformed in the | 
 |         // evaluator into the "local" jacobian. In the tests, the "subset | 
 |         // constant" manifold is used, which should pick out columns from these | 
 |         // jacobians. Put values in the jacobian that make this obvious; in | 
 |         // particular, make the jacobians like this: | 
 |         // | 
 |         //   1 2 3 4 ... | 
 |         //   1 2 3 4 ...   .*  kFactor | 
 |         //   1 2 3 4 ... | 
 |         // | 
 |         // where the multiplication by kFactor makes it easier to distinguish | 
 |         // between Jacobians of different residuals for the same parameter. | 
 |         if (jacobians[k] != nullptr) { | 
 |           MatrixRef jacobian(jacobians[k], | 
 |                              Base::num_residuals(), | 
 |                              Base::parameter_block_sizes()[k]); | 
 |           for (int j = 0; j < Base::parameter_block_sizes()[k]; ++j) { | 
 |             jacobian.col(j).setConstant(kFactor * (j + 1)); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     return succeeds_; | 
 |   } | 
 |  | 
 |  private: | 
 |   bool succeeds_; | 
 | }; | 
 |  | 
 | struct EvaluatorTestOptions { | 
 |   EvaluatorTestOptions(LinearSolverType linear_solver_type, | 
 |                        int num_eliminate_blocks, | 
 |                        bool dynamic_sparsity = false) | 
 |       : linear_solver_type(linear_solver_type), | 
 |         num_eliminate_blocks(num_eliminate_blocks), | 
 |         dynamic_sparsity(dynamic_sparsity) {} | 
 |  | 
 |   LinearSolverType linear_solver_type; | 
 |   int num_eliminate_blocks; | 
 |   bool dynamic_sparsity; | 
 | }; | 
 |  | 
 | struct EvaluatorTest : public ::testing::TestWithParam<EvaluatorTestOptions> { | 
 |   std::unique_ptr<Evaluator> CreateEvaluator(Program* program) { | 
 |     // This program is straight from the ProblemImpl, and so has no index/offset | 
 |     // yet; compute it here as required by the evaluator implementations. | 
 |     program->SetParameterOffsetsAndIndex(); | 
 |  | 
 |     if (VLOG_IS_ON(1)) { | 
 |       string report; | 
 |       StringAppendF(&report, | 
 |                     "Creating evaluator with type: %d", | 
 |                     GetParam().linear_solver_type); | 
 |       if (GetParam().linear_solver_type == SPARSE_NORMAL_CHOLESKY) { | 
 |         StringAppendF( | 
 |             &report, ", dynamic_sparsity: %d", GetParam().dynamic_sparsity); | 
 |       } | 
 |       StringAppendF(&report, | 
 |                     " and num_eliminate_blocks: %d", | 
 |                     GetParam().num_eliminate_blocks); | 
 |       VLOG(1) << report; | 
 |     } | 
 |     Evaluator::Options options; | 
 |     options.linear_solver_type = GetParam().linear_solver_type; | 
 |     options.num_eliminate_blocks = GetParam().num_eliminate_blocks; | 
 |     options.dynamic_sparsity = GetParam().dynamic_sparsity; | 
 |     options.context = problem.context(); | 
 |     string error; | 
 |     return Evaluator::Create(options, program, &error); | 
 |   } | 
 |  | 
 |   void EvaluateAndCompare(ProblemImpl* problem, | 
 |                           int expected_num_rows, | 
 |                           int expected_num_cols, | 
 |                           double expected_cost, | 
 |                           const double* expected_residuals, | 
 |                           const double* expected_gradient, | 
 |                           const double* expected_jacobian) { | 
 |     std::unique_ptr<Evaluator> evaluator = | 
 |         CreateEvaluator(problem->mutable_program()); | 
 |     int num_residuals = expected_num_rows; | 
 |     int num_parameters = expected_num_cols; | 
 |  | 
 |     double cost = -1; | 
 |  | 
 |     Vector residuals(num_residuals); | 
 |     residuals.setConstant(-2000); | 
 |  | 
 |     Vector gradient(num_parameters); | 
 |     gradient.setConstant(-3000); | 
 |  | 
 |     std::unique_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
 |  | 
 |     ASSERT_EQ(expected_num_rows, evaluator->NumResiduals()); | 
 |     ASSERT_EQ(expected_num_cols, evaluator->NumEffectiveParameters()); | 
 |     ASSERT_EQ(expected_num_rows, jacobian->num_rows()); | 
 |     ASSERT_EQ(expected_num_cols, jacobian->num_cols()); | 
 |  | 
 |     vector<double> state(evaluator->NumParameters()); | 
 |  | 
 |     // clang-format off | 
 |     ASSERT_TRUE(evaluator->Evaluate( | 
 |           &state[0], | 
 |           &cost, | 
 |           expected_residuals != nullptr ? &residuals[0]  : nullptr, | 
 |           expected_gradient  != nullptr ? &gradient[0]   : nullptr, | 
 |           expected_jacobian  != nullptr ? jacobian.get() : nullptr)); | 
 |     // clang-format on | 
 |  | 
 |     Matrix actual_jacobian; | 
 |     if (expected_jacobian != nullptr) { | 
 |       jacobian->ToDenseMatrix(&actual_jacobian); | 
 |     } | 
 |  | 
 |     CompareEvaluations(expected_num_rows, | 
 |                        expected_num_cols, | 
 |                        expected_cost, | 
 |                        expected_residuals, | 
 |                        expected_gradient, | 
 |                        expected_jacobian, | 
 |                        cost, | 
 |                        &residuals[0], | 
 |                        &gradient[0], | 
 |                        actual_jacobian.data()); | 
 |   } | 
 |  | 
 |   // Try all combinations of parameters for the evaluator. | 
 |   void CheckAllEvaluationCombinations(const ExpectedEvaluation& expected) { | 
 |     for (int i = 0; i < 8; ++i) { | 
 |       EvaluateAndCompare(&problem, | 
 |                          expected.num_rows, | 
 |                          expected.num_cols, | 
 |                          expected.cost, | 
 |                          (i & 1) ? expected.residuals : nullptr, | 
 |                          (i & 2) ? expected.gradient : nullptr, | 
 |                          (i & 4) ? expected.jacobian : nullptr); | 
 |     } | 
 |   } | 
 |  | 
 |   // The values are ignored completely by the cost function. | 
 |   double x[2]; | 
 |   double y[3]; | 
 |   double z[4]; | 
 |  | 
 |   ProblemImpl problem; | 
 | }; | 
 |  | 
 | static void SetSparseMatrixConstant(SparseMatrix* sparse_matrix, double value) { | 
 |   VectorRef(sparse_matrix->mutable_values(), sparse_matrix->num_nonzeros()) | 
 |       .setConstant(value); | 
 | } | 
 |  | 
 | TEST_P(EvaluatorTest, SingleResidualProblem) { | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>, nullptr, x, y, z); | 
 |  | 
 |   // clang-format off | 
 |   ExpectedEvaluation expected = { | 
 |     // Rows/columns | 
 |     3, 9, | 
 |     // Cost | 
 |     7.0, | 
 |     // Residuals | 
 |     { 1.0, 2.0, 3.0 }, | 
 |     // Gradient | 
 |     { 6.0, 12.0,              // x | 
 |       6.0, 12.0, 18.0,        // y | 
 |       6.0, 12.0, 18.0, 24.0,  // z | 
 |     }, | 
 |     // Jacobian | 
 |     //   x          y             z | 
 |     { 1, 2,   1, 2, 3,   1, 2, 3, 4, | 
 |       1, 2,   1, 2, 3,   1, 2, 3, 4, | 
 |       1, 2,   1, 2, 3,   1, 2, 3, 4 | 
 |     } | 
 |   }; | 
 |   // clang-format on | 
 |   CheckAllEvaluationCombinations(expected); | 
 | } | 
 |  | 
 | TEST_P(EvaluatorTest, SingleResidualProblemWithPermutedParameters) { | 
 |   // Add the parameters in explicit order to force the ordering in the program. | 
 |   problem.AddParameterBlock(x, 2); | 
 |   problem.AddParameterBlock(y, 3); | 
 |   problem.AddParameterBlock(z, 4); | 
 |  | 
 |   // Then use a cost function which is similar to the others, but swap around | 
 |   // the ordering of the parameters to the cost function. This shouldn't affect | 
 |   // the jacobian evaluation, but requires explicit handling in the evaluators. | 
 |   // At one point the compressed row evaluator had a bug that went undetected | 
 |   // for a long time, since by chance most users added parameters to the problem | 
 |   // in the same order that they occurred as parameters to a cost function. | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<1, 3, 4, 3, 2>, nullptr, z, y, x); | 
 |  | 
 |   // clang-format off | 
 |   ExpectedEvaluation expected = { | 
 |     // Rows/columns | 
 |     3, 9, | 
 |     // Cost | 
 |     7.0, | 
 |     // Residuals | 
 |     { 1.0, 2.0, 3.0 }, | 
 |     // Gradient | 
 |     { 6.0, 12.0,              // x | 
 |       6.0, 12.0, 18.0,        // y | 
 |       6.0, 12.0, 18.0, 24.0,  // z | 
 |     }, | 
 |     // Jacobian | 
 |     //   x          y             z | 
 |     { 1, 2,   1, 2, 3,   1, 2, 3, 4, | 
 |       1, 2,   1, 2, 3,   1, 2, 3, 4, | 
 |       1, 2,   1, 2, 3,   1, 2, 3, 4 | 
 |     } | 
 |   }; | 
 |   // clang-format on | 
 |   CheckAllEvaluationCombinations(expected); | 
 | } | 
 |  | 
 | TEST_P(EvaluatorTest, SingleResidualProblemWithNuisanceParameters) { | 
 |   // These parameters are not used. | 
 |   double a[2]; | 
 |   double b[1]; | 
 |   double c[1]; | 
 |   double d[3]; | 
 |  | 
 |   // Add the parameters in a mixed order so the Jacobian is "checkered" with the | 
 |   // values from the other parameters. | 
 |   problem.AddParameterBlock(a, 2); | 
 |   problem.AddParameterBlock(x, 2); | 
 |   problem.AddParameterBlock(b, 1); | 
 |   problem.AddParameterBlock(y, 3); | 
 |   problem.AddParameterBlock(c, 1); | 
 |   problem.AddParameterBlock(z, 4); | 
 |   problem.AddParameterBlock(d, 3); | 
 |  | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<1, 3, 2, 3, 4>, nullptr, x, y, z); | 
 |  | 
 |   // clang-format off | 
 |   ExpectedEvaluation expected = { | 
 |     // Rows/columns | 
 |     3, 16, | 
 |     // Cost | 
 |     7.0, | 
 |     // Residuals | 
 |     { 1.0, 2.0, 3.0 }, | 
 |     // Gradient | 
 |     { 0.0, 0.0,               // a | 
 |       6.0, 12.0,              // x | 
 |       0.0,                    // b | 
 |       6.0, 12.0, 18.0,        // y | 
 |       0.0,                    // c | 
 |       6.0, 12.0, 18.0, 24.0,  // z | 
 |       0.0, 0.0, 0.0,          // d | 
 |     }, | 
 |     // Jacobian | 
 |     //   a        x     b           y     c              z           d | 
 |     { 0, 0,    1, 2,    0,    1, 2, 3,    0,    1, 2, 3, 4,    0, 0, 0, | 
 |       0, 0,    1, 2,    0,    1, 2, 3,    0,    1, 2, 3, 4,    0, 0, 0, | 
 |       0, 0,    1, 2,    0,    1, 2, 3,    0,    1, 2, 3, 4,    0, 0, 0 | 
 |     } | 
 |   }; | 
 |   // clang-format on | 
 |   CheckAllEvaluationCombinations(expected); | 
 | } | 
 |  | 
 | TEST_P(EvaluatorTest, MultipleResidualProblem) { | 
 |   // Add the parameters in explicit order to force the ordering in the program. | 
 |   problem.AddParameterBlock(x, 2); | 
 |   problem.AddParameterBlock(y, 3); | 
 |   problem.AddParameterBlock(z, 4); | 
 |  | 
 |   // f(x, y) in R^2 | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<1, 2, 2, 3>, nullptr, x, y); | 
 |  | 
 |   // g(x, z) in R^3 | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<2, 3, 2, 4>, nullptr, x, z); | 
 |  | 
 |   // h(y, z) in R^4 | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<3, 4, 3, 4>, nullptr, y, z); | 
 |  | 
 |   // clang-format off | 
 |   ExpectedEvaluation expected = { | 
 |     // Rows/columns | 
 |     9, 9, | 
 |     // Cost | 
 |     // f       g           h | 
 |     (  1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0, | 
 |     // Residuals | 
 |     { 1.0, 2.0,           // f | 
 |       1.0, 2.0, 3.0,      // g | 
 |       1.0, 2.0, 3.0, 4.0  // h | 
 |     }, | 
 |     // Gradient | 
 |     { 15.0, 30.0,               // x | 
 |       33.0, 66.0, 99.0,         // y | 
 |       42.0, 84.0, 126.0, 168.0  // z | 
 |     }, | 
 |     // Jacobian | 
 |     //                x        y           z | 
 |     {   /* f(x, y) */ 1, 2,    1, 2, 3,    0, 0, 0, 0, | 
 |                       1, 2,    1, 2, 3,    0, 0, 0, 0, | 
 |  | 
 |         /* g(x, z) */ 2, 4,    0, 0, 0,    2, 4, 6, 8, | 
 |                       2, 4,    0, 0, 0,    2, 4, 6, 8, | 
 |                       2, 4,    0, 0, 0,    2, 4, 6, 8, | 
 |  | 
 |         /* h(y, z) */ 0, 0,    3, 6, 9,    3, 6, 9, 12, | 
 |                       0, 0,    3, 6, 9,    3, 6, 9, 12, | 
 |                       0, 0,    3, 6, 9,    3, 6, 9, 12, | 
 |                       0, 0,    3, 6, 9,    3, 6, 9, 12 | 
 |     } | 
 |   }; | 
 |   // clang-format on | 
 |   CheckAllEvaluationCombinations(expected); | 
 | } | 
 |  | 
 | TEST_P(EvaluatorTest, MultipleResidualsWithManifolds) { | 
 |   // Add the parameters in explicit order to force the ordering in the program. | 
 |   problem.AddParameterBlock(x, 2); | 
 |  | 
 |   // Fix y's first dimension. | 
 |   vector<int> y_fixed; | 
 |   y_fixed.push_back(0); | 
 |   problem.AddParameterBlock(y, 3, new SubsetManifold(3, y_fixed)); | 
 |  | 
 |   // Fix z's second dimension. | 
 |   vector<int> z_fixed; | 
 |   z_fixed.push_back(1); | 
 |   problem.AddParameterBlock(z, 4, new SubsetManifold(4, z_fixed)); | 
 |  | 
 |   // f(x, y) in R^2 | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<1, 2, 2, 3>, nullptr, x, y); | 
 |  | 
 |   // g(x, z) in R^3 | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<2, 3, 2, 4>, nullptr, x, z); | 
 |  | 
 |   // h(y, z) in R^4 | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<3, 4, 3, 4>, nullptr, y, z); | 
 |  | 
 |   // clang-format off | 
 |   ExpectedEvaluation expected = { | 
 |     // Rows/columns | 
 |     9, 7, | 
 |     // Cost | 
 |     // f       g           h | 
 |     (  1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0, | 
 |     // Residuals | 
 |     { 1.0, 2.0,           // f | 
 |       1.0, 2.0, 3.0,      // g | 
 |       1.0, 2.0, 3.0, 4.0  // h | 
 |     }, | 
 |     // Gradient | 
 |     { 15.0, 30.0,         // x | 
 |       66.0, 99.0,         // y | 
 |       42.0, 126.0, 168.0  // z | 
 |     }, | 
 |     // Jacobian | 
 |     //                x        y           z | 
 |     {   /* f(x, y) */ 1, 2,    2, 3,    0, 0, 0, | 
 |                       1, 2,    2, 3,    0, 0, 0, | 
 |  | 
 |         /* g(x, z) */ 2, 4,    0, 0,    2, 6, 8, | 
 |                       2, 4,    0, 0,    2, 6, 8, | 
 |                       2, 4,    0, 0,    2, 6, 8, | 
 |  | 
 |         /* h(y, z) */ 0, 0,    6, 9,    3, 9, 12, | 
 |                       0, 0,    6, 9,    3, 9, 12, | 
 |                       0, 0,    6, 9,    3, 9, 12, | 
 |                       0, 0,    6, 9,    3, 9, 12 | 
 |     } | 
 |   }; | 
 |   // clang-format on | 
 |   CheckAllEvaluationCombinations(expected); | 
 | } | 
 |  | 
 | TEST_P(EvaluatorTest, MultipleResidualProblemWithSomeConstantParameters) { | 
 |   // The values are ignored completely by the cost function. | 
 |   double x[2]; | 
 |   double y[3]; | 
 |   double z[4]; | 
 |  | 
 |   // Add the parameters in explicit order to force the ordering in the program. | 
 |   problem.AddParameterBlock(x, 2); | 
 |   problem.AddParameterBlock(y, 3); | 
 |   problem.AddParameterBlock(z, 4); | 
 |  | 
 |   // f(x, y) in R^2 | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<1, 2, 2, 3>, nullptr, x, y); | 
 |  | 
 |   // g(x, z) in R^3 | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<2, 3, 2, 4>, nullptr, x, z); | 
 |  | 
 |   // h(y, z) in R^4 | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<3, 4, 3, 4>, nullptr, y, z); | 
 |  | 
 |   // For this test, "z" is constant. | 
 |   problem.SetParameterBlockConstant(z); | 
 |  | 
 |   // Create the reduced program which is missing the fixed "z" variable. | 
 |   // Normally, the preprocessing of the program that happens in solver_impl | 
 |   // takes care of this, but we don't want to invoke the solver here. | 
 |   Program reduced_program; | 
 |   vector<ParameterBlock*>* parameter_blocks = | 
 |       problem.mutable_program()->mutable_parameter_blocks(); | 
 |  | 
 |   // "z" is the last parameter; save it for later and pop it off temporarily. | 
 |   // Note that "z" will still get read during evaluation, so it cannot be | 
 |   // deleted at this point. | 
 |   ParameterBlock* parameter_block_z = parameter_blocks->back(); | 
 |   parameter_blocks->pop_back(); | 
 |  | 
 |   // clang-format off | 
 |   ExpectedEvaluation expected = { | 
 |     // Rows/columns | 
 |     9, 5, | 
 |     // Cost | 
 |     // f       g           h | 
 |     (  1 + 4 + 1 + 4 + 9 + 1 + 4 + 9 + 16) / 2.0, | 
 |     // Residuals | 
 |     { 1.0, 2.0,           // f | 
 |       1.0, 2.0, 3.0,      // g | 
 |       1.0, 2.0, 3.0, 4.0  // h | 
 |     }, | 
 |     // Gradient | 
 |     { 15.0, 30.0,        // x | 
 |       33.0, 66.0, 99.0,  // y | 
 |     }, | 
 |     // Jacobian | 
 |     //                x        y | 
 |     {   /* f(x, y) */ 1, 2,    1, 2, 3, | 
 |                       1, 2,    1, 2, 3, | 
 |  | 
 |         /* g(x, z) */ 2, 4,    0, 0, 0, | 
 |                       2, 4,    0, 0, 0, | 
 |                       2, 4,    0, 0, 0, | 
 |  | 
 |         /* h(y, z) */ 0, 0,    3, 6, 9, | 
 |                       0, 0,    3, 6, 9, | 
 |                       0, 0,    3, 6, 9, | 
 |                       0, 0,    3, 6, 9 | 
 |     } | 
 |   }; | 
 |   // clang-format on | 
 |   CheckAllEvaluationCombinations(expected); | 
 |  | 
 |   // Restore parameter block z, so it will get freed in a consistent way. | 
 |   parameter_blocks->push_back(parameter_block_z); | 
 | } | 
 |  | 
 | TEST_P(EvaluatorTest, EvaluatorAbortsForResidualsThatFailToEvaluate) { | 
 |   // Switch the return value to failure. | 
 |   problem.AddResidualBlock( | 
 |       new ParameterIgnoringCostFunction<20, 3, 2, 3, 4>(false), | 
 |       nullptr, | 
 |       x, | 
 |       y, | 
 |       z); | 
 |  | 
 |   // The values are ignored. | 
 |   double state[9]; | 
 |  | 
 |   std::unique_ptr<Evaluator> evaluator = | 
 |       CreateEvaluator(problem.mutable_program()); | 
 |   std::unique_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
 |   double cost; | 
 |   EXPECT_FALSE(evaluator->Evaluate(state, &cost, nullptr, nullptr, nullptr)); | 
 | } | 
 |  | 
 | // In the pairs, the first argument is the linear solver type, and the second | 
 | // argument is num_eliminate_blocks. Changing the num_eliminate_blocks only | 
 | // makes sense for the schur-based solvers. | 
 | // | 
 | // Try all values of num_eliminate_blocks that make sense given that in the | 
 | // tests a maximum of 4 parameter blocks are present. | 
 | INSTANTIATE_TEST_SUITE_P( | 
 |     LinearSolvers, | 
 |     EvaluatorTest, | 
 |     ::testing::Values(EvaluatorTestOptions(DENSE_QR, 0), | 
 |                       EvaluatorTestOptions(DENSE_SCHUR, 0), | 
 |                       EvaluatorTestOptions(DENSE_SCHUR, 1), | 
 |                       EvaluatorTestOptions(DENSE_SCHUR, 2), | 
 |                       EvaluatorTestOptions(DENSE_SCHUR, 3), | 
 |                       EvaluatorTestOptions(DENSE_SCHUR, 4), | 
 |                       EvaluatorTestOptions(SPARSE_SCHUR, 0), | 
 |                       EvaluatorTestOptions(SPARSE_SCHUR, 1), | 
 |                       EvaluatorTestOptions(SPARSE_SCHUR, 2), | 
 |                       EvaluatorTestOptions(SPARSE_SCHUR, 3), | 
 |                       EvaluatorTestOptions(SPARSE_SCHUR, 4), | 
 |                       EvaluatorTestOptions(ITERATIVE_SCHUR, 0), | 
 |                       EvaluatorTestOptions(ITERATIVE_SCHUR, 1), | 
 |                       EvaluatorTestOptions(ITERATIVE_SCHUR, 2), | 
 |                       EvaluatorTestOptions(ITERATIVE_SCHUR, 3), | 
 |                       EvaluatorTestOptions(ITERATIVE_SCHUR, 4), | 
 |                       EvaluatorTestOptions(SPARSE_NORMAL_CHOLESKY, 0, false), | 
 |                       EvaluatorTestOptions(SPARSE_NORMAL_CHOLESKY, 0, true))); | 
 |  | 
 | // Simple cost function used to check if the evaluator is sensitive to | 
 | // state changes. | 
 | class ParameterSensitiveCostFunction : public SizedCostFunction<2, 2> { | 
 |  public: | 
 |   bool Evaluate(double const* const* parameters, | 
 |                 double* residuals, | 
 |                 double** jacobians) const final { | 
 |     double x1 = parameters[0][0]; | 
 |     double x2 = parameters[0][1]; | 
 |     residuals[0] = x1 * x1; | 
 |     residuals[1] = x2 * x2; | 
 |  | 
 |     if (jacobians != nullptr) { | 
 |       double* jacobian = jacobians[0]; | 
 |       if (jacobian != nullptr) { | 
 |         jacobian[0] = 2.0 * x1; | 
 |         jacobian[1] = 0.0; | 
 |         jacobian[2] = 0.0; | 
 |         jacobian[3] = 2.0 * x2; | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | TEST(Evaluator, EvaluatorRespectsParameterChanges) { | 
 |   ProblemImpl problem; | 
 |  | 
 |   double x[2]; | 
 |   x[0] = 1.0; | 
 |   x[1] = 1.0; | 
 |  | 
 |   problem.AddResidualBlock(new ParameterSensitiveCostFunction(), nullptr, x); | 
 |   Program* program = problem.mutable_program(); | 
 |   program->SetParameterOffsetsAndIndex(); | 
 |  | 
 |   Evaluator::Options options; | 
 |   options.linear_solver_type = DENSE_QR; | 
 |   options.num_eliminate_blocks = 0; | 
 |   options.context = problem.context(); | 
 |   string error; | 
 |   std::unique_ptr<Evaluator> evaluator( | 
 |       Evaluator::Create(options, program, &error)); | 
 |   std::unique_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); | 
 |  | 
 |   ASSERT_EQ(2, jacobian->num_rows()); | 
 |   ASSERT_EQ(2, jacobian->num_cols()); | 
 |  | 
 |   double state[2]; | 
 |   state[0] = 2.0; | 
 |   state[1] = 3.0; | 
 |  | 
 |   // The original state of a residual block comes from the user's | 
 |   // state. So the original state is 1.0, 1.0, and the only way we get | 
 |   // the 2.0, 3.0 results in the following tests is if it respects the | 
 |   // values in the state vector. | 
 |  | 
 |   // Cost only; no residuals and no jacobian. | 
 |   { | 
 |     double cost = -1; | 
 |     ASSERT_TRUE(evaluator->Evaluate(state, &cost, nullptr, nullptr, nullptr)); | 
 |     EXPECT_EQ(48.5, cost); | 
 |   } | 
 |  | 
 |   // Cost and residuals, no jacobian. | 
 |   { | 
 |     double cost = -1; | 
 |     double residuals[2] = {-2, -2}; | 
 |     ASSERT_TRUE(evaluator->Evaluate(state, &cost, residuals, nullptr, nullptr)); | 
 |     EXPECT_EQ(48.5, cost); | 
 |     EXPECT_EQ(4, residuals[0]); | 
 |     EXPECT_EQ(9, residuals[1]); | 
 |   } | 
 |  | 
 |   // Cost, residuals, and jacobian. | 
 |   { | 
 |     double cost = -1; | 
 |     double residuals[2] = {-2, -2}; | 
 |     SetSparseMatrixConstant(jacobian.get(), -1); | 
 |     ASSERT_TRUE( | 
 |         evaluator->Evaluate(state, &cost, residuals, nullptr, jacobian.get())); | 
 |     EXPECT_EQ(48.5, cost); | 
 |     EXPECT_EQ(4, residuals[0]); | 
 |     EXPECT_EQ(9, residuals[1]); | 
 |     Matrix actual_jacobian; | 
 |     jacobian->ToDenseMatrix(&actual_jacobian); | 
 |  | 
 |     Matrix expected_jacobian(2, 2); | 
 |     expected_jacobian << 2 * state[0], 0, 0, 2 * state[1]; | 
 |  | 
 |     EXPECT_TRUE((actual_jacobian.array() == expected_jacobian.array()).all()) | 
 |         << "Actual:\n" | 
 |         << actual_jacobian << "\nExpected:\n" | 
 |         << expected_jacobian; | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |