| // Ceres Solver - A fast non-linear least squares minimizer | 
 | // Copyright 2015 Google Inc. All rights reserved. | 
 | // http://ceres-solver.org/ | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are met: | 
 | // | 
 | // * Redistributions of source code must retain the above copyright notice, | 
 | //   this list of conditions and the following disclaimer. | 
 | // * Redistributions in binary form must reproduce the above copyright notice, | 
 | //   this list of conditions and the following disclaimer in the documentation | 
 | //   and/or other materials provided with the distribution. | 
 | // * Neither the name of Google Inc. nor the names of its contributors may be | 
 | //   used to endorse or promote products derived from this software without | 
 | //   specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
 | // POSSIBILITY OF SUCH DAMAGE. | 
 | // | 
 | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
 |  | 
 | #include "ceres/block_sparse_matrix.h" | 
 |  | 
 | #include <memory> | 
 | #include <string> | 
 |  | 
 | #include "ceres/casts.h" | 
 | #include "ceres/crs_matrix.h" | 
 | #include "ceres/internal/eigen.h" | 
 | #include "ceres/linear_least_squares_problems.h" | 
 | #include "ceres/triplet_sparse_matrix.h" | 
 | #include "glog/logging.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace ceres { | 
 | namespace internal { | 
 |  | 
 | namespace { | 
 |  | 
 | std::unique_ptr<BlockSparseMatrix> CreateTestMatrixFromId(int id) { | 
 |   if (id == 0) { | 
 |     // Create the following block sparse matrix: | 
 |     // [ 1 2 0 0  0 0 ] | 
 |     // [ 3 4 0 0  0 0 ] | 
 |     // [ 0 0 5 6  7 0 ] | 
 |     // [ 0 0 8 9 10 0 ] | 
 |     CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; | 
 |     bs->cols = { | 
 |         // Block size 2, position 0. | 
 |         Block(2, 0), | 
 |         // Block size 3, position 2. | 
 |         Block(3, 2), | 
 |         // Block size 1, position 5. | 
 |         Block(1, 5), | 
 |     }; | 
 |     bs->rows = {CompressedRow(1), CompressedRow(1)}; | 
 |     bs->rows[0].block = Block(2, 0); | 
 |     bs->rows[0].cells = {Cell(0, 0)}; | 
 |  | 
 |     bs->rows[1].block = Block(2, 2); | 
 |     bs->rows[1].cells = {Cell(1, 4)}; | 
 |     auto m = std::make_unique<BlockSparseMatrix>(bs); | 
 |     EXPECT_NE(m, nullptr); | 
 |     EXPECT_EQ(m->num_rows(), 4); | 
 |     EXPECT_EQ(m->num_cols(), 6); | 
 |     EXPECT_EQ(m->num_nonzeros(), 10); | 
 |     double* values = m->mutable_values(); | 
 |     for (int i = 0; i < 10; ++i) { | 
 |       values[i] = i + 1; | 
 |     } | 
 |     return m; | 
 |   } else if (id == 1) { | 
 |     // Create the following block sparse matrix: | 
 |     // [ 1 2 0 5 6 0 ] | 
 |     // [ 3 4 0 7 8 0 ] | 
 |     // [ 0 0 9 0 0 0 ] | 
 |     CompressedRowBlockStructure* bs = new CompressedRowBlockStructure; | 
 |     bs->cols = { | 
 |         // Block size 2, position 0. | 
 |         Block(2, 0), | 
 |         // Block size 1, position 2. | 
 |         Block(1, 2), | 
 |         // Block size 2, position 3. | 
 |         Block(2, 3), | 
 |         // Block size 1, position 5. | 
 |         Block(1, 5), | 
 |     }; | 
 |     bs->rows = {CompressedRow(2), CompressedRow(1)}; | 
 |     bs->rows[0].block = Block(2, 0); | 
 |     bs->rows[0].cells = {Cell(0, 0), Cell(2, 4)}; | 
 |  | 
 |     bs->rows[1].block = Block(1, 2); | 
 |     bs->rows[1].cells = {Cell(1, 8)}; | 
 |     auto m = std::make_unique<BlockSparseMatrix>(bs); | 
 |     EXPECT_NE(m, nullptr); | 
 |     EXPECT_EQ(m->num_rows(), 3); | 
 |     EXPECT_EQ(m->num_cols(), 6); | 
 |     EXPECT_EQ(m->num_nonzeros(), 9); | 
 |     double* values = m->mutable_values(); | 
 |     for (int i = 0; i < 9; ++i) { | 
 |       values[i] = i + 1; | 
 |     } | 
 |     return m; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 | }  // namespace | 
 |  | 
 | class BlockSparseMatrixTest : public ::testing::Test { | 
 |  protected: | 
 |   void SetUp() final { | 
 |     std::unique_ptr<LinearLeastSquaresProblem> problem = | 
 |         CreateLinearLeastSquaresProblemFromId(2); | 
 |     CHECK(problem != nullptr); | 
 |     A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release())); | 
 |  | 
 |     problem = CreateLinearLeastSquaresProblemFromId(1); | 
 |     CHECK(problem != nullptr); | 
 |     B_.reset(down_cast<TripletSparseMatrix*>(problem->A.release())); | 
 |  | 
 |     CHECK_EQ(A_->num_rows(), B_->num_rows()); | 
 |     CHECK_EQ(A_->num_cols(), B_->num_cols()); | 
 |     CHECK_EQ(A_->num_nonzeros(), B_->num_nonzeros()); | 
 |   } | 
 |  | 
 |   std::unique_ptr<BlockSparseMatrix> A_; | 
 |   std::unique_ptr<TripletSparseMatrix> B_; | 
 | }; | 
 |  | 
 | TEST_F(BlockSparseMatrixTest, SetZeroTest) { | 
 |   A_->SetZero(); | 
 |   EXPECT_EQ(13, A_->num_nonzeros()); | 
 | } | 
 |  | 
 | TEST_F(BlockSparseMatrixTest, RightMultiplyAndAccumulateTest) { | 
 |   Vector y_a = Vector::Zero(A_->num_rows()); | 
 |   Vector y_b = Vector::Zero(A_->num_rows()); | 
 |   for (int i = 0; i < A_->num_cols(); ++i) { | 
 |     Vector x = Vector::Zero(A_->num_cols()); | 
 |     x[i] = 1.0; | 
 |     A_->RightMultiplyAndAccumulate(x.data(), y_a.data()); | 
 |     B_->RightMultiplyAndAccumulate(x.data(), y_b.data()); | 
 |     EXPECT_LT((y_a - y_b).norm(), 1e-12); | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(BlockSparseMatrixTest, LeftMultiplyAndAccumulateTest) { | 
 |   Vector y_a = Vector::Zero(A_->num_cols()); | 
 |   Vector y_b = Vector::Zero(A_->num_cols()); | 
 |   for (int i = 0; i < A_->num_rows(); ++i) { | 
 |     Vector x = Vector::Zero(A_->num_rows()); | 
 |     x[i] = 1.0; | 
 |     A_->LeftMultiplyAndAccumulate(x.data(), y_a.data()); | 
 |     B_->LeftMultiplyAndAccumulate(x.data(), y_b.data()); | 
 |     EXPECT_LT((y_a - y_b).norm(), 1e-12); | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(BlockSparseMatrixTest, SquaredColumnNormTest) { | 
 |   Vector y_a = Vector::Zero(A_->num_cols()); | 
 |   Vector y_b = Vector::Zero(A_->num_cols()); | 
 |   A_->SquaredColumnNorm(y_a.data()); | 
 |   B_->SquaredColumnNorm(y_b.data()); | 
 |   EXPECT_LT((y_a - y_b).norm(), 1e-12); | 
 | } | 
 |  | 
 | TEST_F(BlockSparseMatrixTest, ToDenseMatrixTest) { | 
 |   Matrix m_a; | 
 |   Matrix m_b; | 
 |   A_->ToDenseMatrix(&m_a); | 
 |   B_->ToDenseMatrix(&m_b); | 
 |   EXPECT_LT((m_a - m_b).norm(), 1e-12); | 
 | } | 
 |  | 
 | TEST_F(BlockSparseMatrixTest, AppendRows) { | 
 |   std::unique_ptr<LinearLeastSquaresProblem> problem = | 
 |       CreateLinearLeastSquaresProblemFromId(2); | 
 |   std::unique_ptr<BlockSparseMatrix> m( | 
 |       down_cast<BlockSparseMatrix*>(problem->A.release())); | 
 |   A_->AppendRows(*m); | 
 |   EXPECT_EQ(A_->num_rows(), 2 * m->num_rows()); | 
 |   EXPECT_EQ(A_->num_cols(), m->num_cols()); | 
 |  | 
 |   problem = CreateLinearLeastSquaresProblemFromId(1); | 
 |   std::unique_ptr<TripletSparseMatrix> m2( | 
 |       down_cast<TripletSparseMatrix*>(problem->A.release())); | 
 |   B_->AppendRows(*m2); | 
 |  | 
 |   Vector y_a = Vector::Zero(A_->num_rows()); | 
 |   Vector y_b = Vector::Zero(A_->num_rows()); | 
 |   for (int i = 0; i < A_->num_cols(); ++i) { | 
 |     Vector x = Vector::Zero(A_->num_cols()); | 
 |     x[i] = 1.0; | 
 |     y_a.setZero(); | 
 |     y_b.setZero(); | 
 |  | 
 |     A_->RightMultiplyAndAccumulate(x.data(), y_a.data()); | 
 |     B_->RightMultiplyAndAccumulate(x.data(), y_b.data()); | 
 |     EXPECT_LT((y_a - y_b).norm(), 1e-12); | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(BlockSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) { | 
 |   const std::vector<Block>& column_blocks = A_->block_structure()->cols; | 
 |   const int num_cols = | 
 |       column_blocks.back().size + column_blocks.back().position; | 
 |   Vector diagonal(num_cols); | 
 |   for (int i = 0; i < num_cols; ++i) { | 
 |     diagonal(i) = 2 * i * i + 1; | 
 |   } | 
 |   std::unique_ptr<BlockSparseMatrix> appendage( | 
 |       BlockSparseMatrix::CreateDiagonalMatrix(diagonal.data(), column_blocks)); | 
 |  | 
 |   A_->AppendRows(*appendage); | 
 |   Vector y_a, y_b; | 
 |   y_a.resize(A_->num_rows()); | 
 |   y_b.resize(A_->num_rows()); | 
 |   for (int i = 0; i < A_->num_cols(); ++i) { | 
 |     Vector x = Vector::Zero(A_->num_cols()); | 
 |     x[i] = 1.0; | 
 |     y_a.setZero(); | 
 |     y_b.setZero(); | 
 |  | 
 |     A_->RightMultiplyAndAccumulate(x.data(), y_a.data()); | 
 |     B_->RightMultiplyAndAccumulate(x.data(), y_b.data()); | 
 |     EXPECT_LT((y_a.head(B_->num_rows()) - y_b.head(B_->num_rows())).norm(), | 
 |               1e-12); | 
 |     Vector expected_tail = Vector::Zero(A_->num_cols()); | 
 |     expected_tail(i) = diagonal(i); | 
 |     EXPECT_LT((y_a.tail(A_->num_cols()) - expected_tail).norm(), 1e-12); | 
 |   } | 
 |  | 
 |   A_->DeleteRowBlocks(column_blocks.size()); | 
 |   EXPECT_EQ(A_->num_rows(), B_->num_rows()); | 
 |   EXPECT_EQ(A_->num_cols(), B_->num_cols()); | 
 |  | 
 |   y_a.resize(A_->num_rows()); | 
 |   y_b.resize(A_->num_rows()); | 
 |   for (int i = 0; i < A_->num_cols(); ++i) { | 
 |     Vector x = Vector::Zero(A_->num_cols()); | 
 |     x[i] = 1.0; | 
 |     y_a.setZero(); | 
 |     y_b.setZero(); | 
 |  | 
 |     A_->RightMultiplyAndAccumulate(x.data(), y_a.data()); | 
 |     B_->RightMultiplyAndAccumulate(x.data(), y_b.data()); | 
 |     EXPECT_LT((y_a - y_b).norm(), 1e-12); | 
 |   } | 
 | } | 
 |  | 
 | TEST(BlockSparseMatrix, CreateDiagonalMatrix) { | 
 |   std::vector<Block> column_blocks; | 
 |   column_blocks.emplace_back(2, 0); | 
 |   column_blocks.emplace_back(1, 2); | 
 |   column_blocks.emplace_back(3, 3); | 
 |   const int num_cols = | 
 |       column_blocks.back().size + column_blocks.back().position; | 
 |   Vector diagonal(num_cols); | 
 |   for (int i = 0; i < num_cols; ++i) { | 
 |     diagonal(i) = 2 * i * i + 1; | 
 |   } | 
 |  | 
 |   std::unique_ptr<BlockSparseMatrix> m( | 
 |       BlockSparseMatrix::CreateDiagonalMatrix(diagonal.data(), column_blocks)); | 
 |   const CompressedRowBlockStructure* bs = m->block_structure(); | 
 |   EXPECT_EQ(bs->cols.size(), column_blocks.size()); | 
 |   for (int i = 0; i < column_blocks.size(); ++i) { | 
 |     EXPECT_EQ(bs->cols[i].size, column_blocks[i].size); | 
 |     EXPECT_EQ(bs->cols[i].position, column_blocks[i].position); | 
 |   } | 
 |   EXPECT_EQ(m->num_rows(), m->num_cols()); | 
 |   Vector x = Vector::Ones(num_cols); | 
 |   Vector y = Vector::Zero(num_cols); | 
 |   m->RightMultiplyAndAccumulate(x.data(), y.data()); | 
 |   for (int i = 0; i < num_cols; ++i) { | 
 |     EXPECT_NEAR(y[i], diagonal[i], std::numeric_limits<double>::epsilon()); | 
 |   } | 
 | } | 
 |  | 
 | TEST(BlockSparseMatrix, ToDenseMatrix) { | 
 |   { | 
 |     std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(0); | 
 |     Matrix m_dense; | 
 |     m->ToDenseMatrix(&m_dense); | 
 |     EXPECT_EQ(m_dense.rows(), 4); | 
 |     EXPECT_EQ(m_dense.cols(), 6); | 
 |     Matrix m_expected(4, 6); | 
 |     m_expected << 1, 2, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 5, 6, 7, 0, 0, 0, 8, | 
 |         9, 10, 0; | 
 |     EXPECT_EQ(m_dense, m_expected); | 
 |   } | 
 |  | 
 |   { | 
 |     std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(1); | 
 |     Matrix m_dense; | 
 |     m->ToDenseMatrix(&m_dense); | 
 |     EXPECT_EQ(m_dense.rows(), 3); | 
 |     EXPECT_EQ(m_dense.cols(), 6); | 
 |     Matrix m_expected(3, 6); | 
 |     m_expected << 1, 2, 0, 5, 6, 0, 3, 4, 0, 7, 8, 0, 0, 0, 9, 0, 0, 0; | 
 |     EXPECT_EQ(m_dense, m_expected); | 
 |   } | 
 | } | 
 |  | 
 | TEST(BlockSparseMatrix, ToCRSMatrix) { | 
 |   { | 
 |     std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(0); | 
 |     CompressedRowSparseMatrix m_crs( | 
 |         m->num_rows(), m->num_cols(), m->num_nonzeros()); | 
 |     m->ToCompressedRowSparseMatrix(&m_crs); | 
 |     std::vector<int> rows_expected = {0, 2, 4, 7, 10}; | 
 |     std::vector<int> cols_expected = {0, 1, 0, 1, 2, 3, 4, 2, 3, 4}; | 
 |     std::vector<double> values_expected = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; | 
 |     for (int i = 0; i < rows_expected.size(); ++i) { | 
 |       EXPECT_EQ(m_crs.rows()[i], rows_expected[i]); | 
 |     } | 
 |     for (int i = 0; i < cols_expected.size(); ++i) { | 
 |       EXPECT_EQ(m_crs.cols()[i], cols_expected[i]); | 
 |     } | 
 |     for (int i = 0; i < values_expected.size(); ++i) { | 
 |       EXPECT_EQ(m_crs.values()[i], values_expected[i]); | 
 |     } | 
 |   } | 
 |   { | 
 |     std::unique_ptr<BlockSparseMatrix> m = CreateTestMatrixFromId(1); | 
 |     CompressedRowSparseMatrix m_crs( | 
 |         m->num_rows(), m->num_cols(), m->num_nonzeros()); | 
 |     m->ToCompressedRowSparseMatrix(&m_crs); | 
 |     std::vector<int> rows_expected = {0, 4, 8, 9}; | 
 |     std::vector<int> cols_expected = {0, 1, 3, 4, 0, 1, 3, 4, 2}; | 
 |     std::vector<double> values_expected = {1, 2, 5, 6, 3, 4, 7, 8, 9}; | 
 |     for (int i = 0; i < rows_expected.size(); ++i) { | 
 |       EXPECT_EQ(m_crs.rows()[i], rows_expected[i]); | 
 |     } | 
 |     for (int i = 0; i < cols_expected.size(); ++i) { | 
 |       EXPECT_EQ(m_crs.cols()[i], cols_expected[i]); | 
 |     } | 
 |     for (int i = 0; i < values_expected.size(); ++i) { | 
 |       EXPECT_EQ(m_crs.values()[i], values_expected[i]); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace ceres |