|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #ifndef CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_ | 
|  | #define CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_ | 
|  |  | 
|  | #include <memory> | 
|  | #include <random> | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/block_structure.h" | 
|  | #include "ceres/internal/disable_warnings.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/sparse_matrix.h" | 
|  | #include "ceres/types.h" | 
|  | #include "glog/logging.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | struct CRSMatrix; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | class TripletSparseMatrix; | 
|  |  | 
|  | class CERES_NO_EXPORT CompressedRowSparseMatrix : public SparseMatrix { | 
|  | public: | 
|  | enum class StorageType { | 
|  | UNSYMMETRIC, | 
|  | // Matrix is assumed to be symmetric but only the lower triangular | 
|  | // part of the matrix is stored. | 
|  | LOWER_TRIANGULAR, | 
|  | // Matrix is assumed to be symmetric but only the upper triangular | 
|  | // part of the matrix is stored. | 
|  | UPPER_TRIANGULAR | 
|  | }; | 
|  |  | 
|  | // Create a matrix with the same content as the TripletSparseMatrix | 
|  | // input. We assume that input does not have any repeated | 
|  | // entries. | 
|  | // | 
|  | // The storage type of the matrix is set to UNSYMMETRIC. | 
|  | static std::unique_ptr<CompressedRowSparseMatrix> FromTripletSparseMatrix( | 
|  | const TripletSparseMatrix& input); | 
|  |  | 
|  | // Create a matrix with the same content as the TripletSparseMatrix | 
|  | // input transposed. We assume that input does not have any repeated | 
|  | // entries. | 
|  | // | 
|  | // The storage type of the matrix is set to UNSYMMETRIC. | 
|  | static std::unique_ptr<CompressedRowSparseMatrix> | 
|  | FromTripletSparseMatrixTransposed(const TripletSparseMatrix& input); | 
|  |  | 
|  | // Use this constructor only if you know what you are doing. This | 
|  | // creates a "blank" matrix with the appropriate amount of memory | 
|  | // allocated. However, the object itself is in an inconsistent state | 
|  | // as the rows and cols matrices do not match the values of | 
|  | // num_rows, num_cols and max_num_nonzeros. | 
|  | // | 
|  | // The use case for this constructor is that when the user knows the | 
|  | // size of the matrix to begin with and wants to update the layout | 
|  | // manually, instead of going via the indirect route of first | 
|  | // constructing a TripletSparseMatrix, which leads to more than | 
|  | // double the peak memory usage. | 
|  | // | 
|  | // The storage type is set to UNSYMMETRIC. | 
|  | CompressedRowSparseMatrix(int num_rows, int num_cols, int max_num_nonzeros); | 
|  |  | 
|  | // Build a square sparse diagonal matrix with num_rows rows and | 
|  | // columns. The diagonal m(i,i) = diagonal(i); | 
|  | // | 
|  | // The storage type is set to UNSYMMETRIC | 
|  | CompressedRowSparseMatrix(const double* diagonal, int num_rows); | 
|  |  | 
|  | // SparseMatrix interface. | 
|  | ~CompressedRowSparseMatrix() override; | 
|  | void SetZero() final; | 
|  | void RightMultiplyAndAccumulate(const double* x, double* y) const final; | 
|  | void LeftMultiplyAndAccumulate(const double* x, double* y) const final; | 
|  | void SquaredColumnNorm(double* x) const final; | 
|  | void ScaleColumns(const double* scale) final; | 
|  | void ToDenseMatrix(Matrix* dense_matrix) const final; | 
|  | void ToTextFile(FILE* file) const final; | 
|  | int num_rows() const final { return num_rows_; } | 
|  | int num_cols() const final { return num_cols_; } | 
|  | int num_nonzeros() const final { return rows_[num_rows_]; } | 
|  | const double* values() const final { return values_.data(); } | 
|  | double* mutable_values() final { return values_.data(); } | 
|  |  | 
|  | // Delete the bottom delta_rows. | 
|  | // num_rows -= delta_rows | 
|  | void DeleteRows(int delta_rows); | 
|  |  | 
|  | // Append the contents of m to the bottom of this matrix. m must | 
|  | // have the same number of columns as this matrix. | 
|  | void AppendRows(const CompressedRowSparseMatrix& m); | 
|  |  | 
|  | void ToCRSMatrix(CRSMatrix* matrix) const; | 
|  |  | 
|  | std::unique_ptr<CompressedRowSparseMatrix> Transpose() const; | 
|  |  | 
|  | // Destructive array resizing method. | 
|  | void SetMaxNumNonZeros(int num_nonzeros); | 
|  |  | 
|  | // Non-destructive array resizing method. | 
|  | void set_num_rows(const int num_rows) { num_rows_ = num_rows; } | 
|  | void set_num_cols(const int num_cols) { num_cols_ = num_cols; } | 
|  |  | 
|  | // Low level access methods that expose the structure of the matrix. | 
|  | const int* cols() const { return cols_.data(); } | 
|  | int* mutable_cols() { return cols_.data(); } | 
|  |  | 
|  | const int* rows() const { return rows_.data(); } | 
|  | int* mutable_rows() { return rows_.data(); } | 
|  |  | 
|  | StorageType storage_type() const { return storage_type_; } | 
|  | void set_storage_type(const StorageType storage_type) { | 
|  | storage_type_ = storage_type; | 
|  | } | 
|  |  | 
|  | const std::vector<Block>& row_blocks() const { return row_blocks_; } | 
|  | std::vector<Block>* mutable_row_blocks() { return &row_blocks_; } | 
|  |  | 
|  | const std::vector<Block>& col_blocks() const { return col_blocks_; } | 
|  | std::vector<Block>* mutable_col_blocks() { return &col_blocks_; } | 
|  |  | 
|  | // Create a block diagonal CompressedRowSparseMatrix with the given | 
|  | // block structure. The individual blocks are assumed to be laid out | 
|  | // contiguously in the diagonal array, one block at a time. | 
|  | static std::unique_ptr<CompressedRowSparseMatrix> CreateBlockDiagonalMatrix( | 
|  | const double* diagonal, const std::vector<Block>& blocks); | 
|  |  | 
|  | // Options struct to control the generation of random block sparse | 
|  | // matrices in compressed row sparse format. | 
|  | // | 
|  | // The random matrix generation proceeds as follows. | 
|  | // | 
|  | // First the row and column block structure is determined by | 
|  | // generating random row and column block sizes that lie within the | 
|  | // given bounds. | 
|  | // | 
|  | // Then we walk the block structure of the resulting matrix, and with | 
|  | // probability block_density determine whether they are structurally | 
|  | // zero or not. If the answer is no, then we generate entries for the | 
|  | // block which are distributed normally. | 
|  | struct RandomMatrixOptions { | 
|  | // Type of matrix to create. | 
|  | // | 
|  | // If storage_type is UPPER_TRIANGULAR (LOWER_TRIANGULAR), then | 
|  | // create a square symmetric matrix with just the upper triangular | 
|  | // (lower triangular) part. In this case, num_col_blocks, | 
|  | // min_col_block_size and max_col_block_size will be ignored and | 
|  | // assumed to be equal to the corresponding row settings. | 
|  | StorageType storage_type = StorageType::UNSYMMETRIC; | 
|  |  | 
|  | int num_row_blocks = 0; | 
|  | int min_row_block_size = 0; | 
|  | int max_row_block_size = 0; | 
|  | int num_col_blocks = 0; | 
|  | int min_col_block_size = 0; | 
|  | int max_col_block_size = 0; | 
|  |  | 
|  | // 0 < block_density <= 1 is the probability of a block being | 
|  | // present in the matrix. A given random matrix will not have | 
|  | // precisely this density. | 
|  | double block_density = 0.0; | 
|  | }; | 
|  |  | 
|  | // Create a random CompressedRowSparseMatrix whose entries are | 
|  | // normally distributed and whose structure is determined by | 
|  | // RandomMatrixOptions. | 
|  | static std::unique_ptr<CompressedRowSparseMatrix> CreateRandomMatrix( | 
|  | RandomMatrixOptions options, std::mt19937& prng); | 
|  |  | 
|  | private: | 
|  | static std::unique_ptr<CompressedRowSparseMatrix> FromTripletSparseMatrix( | 
|  | const TripletSparseMatrix& input, bool transpose); | 
|  |  | 
|  | int num_rows_; | 
|  | int num_cols_; | 
|  | std::vector<int> rows_; | 
|  | std::vector<int> cols_; | 
|  | std::vector<double> values_; | 
|  | StorageType storage_type_; | 
|  |  | 
|  | // If the matrix has an underlying block structure, then it can also | 
|  | // carry with it row and column block sizes. This is auxiliary and | 
|  | // optional information for use by algorithms operating on the | 
|  | // matrix. The class itself does not make use of this information in | 
|  | // any way. | 
|  | std::vector<Block> row_blocks_; | 
|  | std::vector<Block> col_blocks_; | 
|  | }; | 
|  |  | 
|  | inline std::ostream& operator<<(std::ostream& s, | 
|  | CompressedRowSparseMatrix::StorageType type) { | 
|  | switch (type) { | 
|  | case CompressedRowSparseMatrix::StorageType::UNSYMMETRIC: | 
|  | s << "UNSYMMETRIC"; | 
|  | break; | 
|  | case CompressedRowSparseMatrix::StorageType::UPPER_TRIANGULAR: | 
|  | s << "UPPER_TRIANGULAR"; | 
|  | break; | 
|  | case CompressedRowSparseMatrix::StorageType::LOWER_TRIANGULAR: | 
|  | s << "LOWER_TRIANGULAR"; | 
|  | break; | 
|  | default: | 
|  | s << "UNKNOWN CompressedRowSparseMatrix::StorageType"; | 
|  | } | 
|  | return s; | 
|  | } | 
|  | }  // namespace internal | 
|  | }  // namespace ceres | 
|  |  | 
|  | #include "ceres/internal/reenable_warnings.h" | 
|  |  | 
|  | #endif  // CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_ |