|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2022 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: markshachkov@gmail.com (Mark Shachkov) | 
|  |  | 
|  | #include "ceres/power_series_expansion_preconditioner.h" | 
|  |  | 
|  | #include "Eigen/Dense" | 
|  | #include "ceres/linear_least_squares_problems.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | const double kEpsilon = 1e-14; | 
|  |  | 
|  | class PowerSeriesExpansionPreconditionerTest : public ::testing::Test { | 
|  | protected: | 
|  | void SetUp() final { | 
|  | problem_ = CreateLinearLeastSquaresProblemFromId(5); | 
|  | const auto A = down_cast<BlockSparseMatrix*>(problem_->A.get()); | 
|  | const auto D = problem_->D.get(); | 
|  |  | 
|  | LinearSolver::Options options; | 
|  | options.elimination_groups.push_back(problem_->num_eliminate_blocks); | 
|  | options.preconditioner_type = SCHUR_POWER_SERIES_EXPANSION; | 
|  | isc_ = std::make_unique<ImplicitSchurComplement>(options); | 
|  | isc_->Init(*A, D, problem_->b.get()); | 
|  | num_f_cols_ = isc_->rhs().rows(); | 
|  | const int num_rows = A->num_rows(), num_cols = A->num_cols(), | 
|  | num_e_cols = num_cols - num_f_cols_; | 
|  |  | 
|  | // Using predefined linear operator with schur structure and block-diagonal | 
|  | // F'F to explicitly construct schur complement and to calculate its inverse | 
|  | // to be used as a reference. | 
|  | Matrix A_dense, E, F, DE, DF; | 
|  | problem_->A->ToDenseMatrix(&A_dense); | 
|  | E = A_dense.leftCols(num_e_cols); | 
|  | F = A_dense.rightCols(num_f_cols_); | 
|  | DE = VectorRef(D, num_e_cols).asDiagonal(); | 
|  | DF = VectorRef(D + num_e_cols, num_f_cols_).asDiagonal(); | 
|  |  | 
|  | sc_inverse_expected_ = | 
|  | (F.transpose() * | 
|  | (Matrix::Identity(num_rows, num_rows) - | 
|  | E * (E.transpose() * E + DE).inverse() * E.transpose()) * | 
|  | F + | 
|  | DF) | 
|  | .inverse(); | 
|  | } | 
|  | std::unique_ptr<LinearLeastSquaresProblem> problem_; | 
|  | std::unique_ptr<ImplicitSchurComplement> isc_; | 
|  | int num_f_cols_; | 
|  | Matrix sc_inverse_expected_; | 
|  | }; | 
|  |  | 
|  | TEST_F(PowerSeriesExpansionPreconditionerTest, | 
|  | InverseValidPreconditionerToleranceReached) { | 
|  | const double spse_tolerance = kEpsilon; | 
|  | const int max_num_iterations = 50; | 
|  | PowerSeriesExpansionPreconditioner preconditioner( | 
|  | isc_.get(), max_num_iterations, spse_tolerance); | 
|  |  | 
|  | Vector x(num_f_cols_), y(num_f_cols_); | 
|  | for (int i = 0; i < num_f_cols_; i++) { | 
|  | x.setZero(); | 
|  | x(i) = 1.0; | 
|  |  | 
|  | y.setZero(); | 
|  | preconditioner.RightMultiplyAndAccumulate(x.data(), y.data()); | 
|  | EXPECT_LT((y - sc_inverse_expected_.col(i)).norm(), kEpsilon) | 
|  | << "Reference Schur complement inverse and its estimate via " | 
|  | "PowerSeriesExpansionPreconditioner differs in " | 
|  | << i | 
|  | << " column.\nreference : " << sc_inverse_expected_.col(i).transpose() | 
|  | << "\nestimated: " << y.transpose(); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(PowerSeriesExpansionPreconditionerTest, | 
|  | InverseValidPreconditionerMaxIterations) { | 
|  | const double spse_tolerance = 0; | 
|  | const int max_num_iterations = 50; | 
|  | PowerSeriesExpansionPreconditioner preconditioner_fixed_n_iterations( | 
|  | isc_.get(), max_num_iterations, spse_tolerance); | 
|  |  | 
|  | Vector x(num_f_cols_), y(num_f_cols_); | 
|  | for (int i = 0; i < num_f_cols_; i++) { | 
|  | x.setZero(); | 
|  | x(i) = 1.0; | 
|  |  | 
|  | y.setZero(); | 
|  | preconditioner_fixed_n_iterations.RightMultiplyAndAccumulate(x.data(), | 
|  | y.data()); | 
|  | EXPECT_LT((y - sc_inverse_expected_.col(i)).norm(), kEpsilon) | 
|  | << "Reference Schur complement inverse and its estimate via " | 
|  | "PowerSeriesExpansionPreconditioner differs in " | 
|  | << i | 
|  | << " column.\nreference : " << sc_inverse_expected_.col(i).transpose() | 
|  | << "\nestimated: " << y.transpose(); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(PowerSeriesExpansionPreconditionerTest, | 
|  | InverseInvalidBadPreconditionerTolerance) { | 
|  | const double spse_tolerance = 1 / kEpsilon; | 
|  | const int max_num_iterations = 50; | 
|  | PowerSeriesExpansionPreconditioner preconditioner_bad_tolerance( | 
|  | isc_.get(), max_num_iterations, spse_tolerance); | 
|  |  | 
|  | Vector x(num_f_cols_), y(num_f_cols_); | 
|  | for (int i = 0; i < num_f_cols_; i++) { | 
|  | x.setZero(); | 
|  | x(i) = 1.0; | 
|  |  | 
|  | y.setZero(); | 
|  | preconditioner_bad_tolerance.RightMultiplyAndAccumulate(x.data(), y.data()); | 
|  | EXPECT_GT((y - sc_inverse_expected_.col(i)).norm(), kEpsilon) | 
|  | << "Reference Schur complement inverse and its estimate via " | 
|  | "PowerSeriesExpansionPreconditioner are too similar, tolerance " | 
|  | "stopping criteria failed."; | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(PowerSeriesExpansionPreconditionerTest, | 
|  | InverseInvalidBadPreconditionerMaxIterations) { | 
|  | const double spse_tolerance = kEpsilon; | 
|  | const int max_num_iterations = 1; | 
|  | PowerSeriesExpansionPreconditioner preconditioner_bad_iterations_limit( | 
|  | isc_.get(), max_num_iterations, spse_tolerance); | 
|  |  | 
|  | Vector x(num_f_cols_), y(num_f_cols_); | 
|  | for (int i = 0; i < num_f_cols_; i++) { | 
|  | x.setZero(); | 
|  | x(i) = 1.0; | 
|  |  | 
|  | y.setZero(); | 
|  | preconditioner_bad_iterations_limit.RightMultiplyAndAccumulate(x.data(), | 
|  | y.data()); | 
|  | EXPECT_GT((y - sc_inverse_expected_.col(i)).norm(), kEpsilon) | 
|  | << "Reference Schur complement inverse and its estimate via " | 
|  | "PowerSeriesExpansionPreconditioner are too similar, maximum " | 
|  | "iterations stopping criteria failed."; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |