|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2024 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  | // | 
|  | // CostFunctionToFunctor is an adapter class that allows users to use | 
|  | // SizedCostFunction objects in templated functors which are to be used for | 
|  | // automatic differentiation. This allows the user to seamlessly mix | 
|  | // analytic, numeric and automatic differentiation. | 
|  | // | 
|  | // For example, let us assume that | 
|  | // | 
|  | //  class IntrinsicProjection : public SizedCostFunction<2, 5, 3> { | 
|  | //    public: | 
|  | //      IntrinsicProjection(const double* observation); | 
|  | //      bool Evaluate(double const* const* parameters, | 
|  | //                    double* residuals, | 
|  | //                    double** jacobians) const override; | 
|  | //  }; | 
|  | // | 
|  | // is a cost function that implements the projection of a point in its | 
|  | // local coordinate system onto its image plane and subtracts it from | 
|  | // the observed point projection. It can compute its residual and | 
|  | // jacobians either via analytic or numerical differentiation. | 
|  | // | 
|  | // Now we would like to compose the action of this CostFunction with | 
|  | // the action of camera extrinsics, i.e., rotation and | 
|  | // translation. Say we have a templated function | 
|  | // | 
|  | //   template<typename T> | 
|  | //   void RotateAndTranslatePoint(const T* rotation, | 
|  | //                                const T* translation, | 
|  | //                                const T* point, | 
|  | //                                T* result); | 
|  | // | 
|  | // Then we can now do the following, | 
|  | // | 
|  | // struct CameraProjection { | 
|  | //   CameraProjection(const double* observation) | 
|  | //       : intrinsic_projection_(new IntrinsicProjection(observation)) { | 
|  | //   } | 
|  | //   template <typename T> | 
|  | //   bool operator()(const T* rotation, | 
|  | //                   const T* translation, | 
|  | //                   const T* intrinsics, | 
|  | //                   const T* point, | 
|  | //                   T* residual) const { | 
|  | //     T transformed_point[3]; | 
|  | //     RotateAndTranslatePoint(rotation, translation, point, transformed_point); | 
|  | // | 
|  | //     // Note that we call intrinsic_projection_, just like it was | 
|  | //     // any other templated functor. | 
|  | // | 
|  | //     return intrinsic_projection_(intrinsics, transformed_point, residual); | 
|  | //   } | 
|  | // | 
|  | //  private: | 
|  | //   CostFunctionToFunctor<2,5,3> intrinsic_projection_; | 
|  | // }; | 
|  |  | 
|  | #ifndef CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_ | 
|  | #define CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_ | 
|  |  | 
|  | #include <cstdint> | 
|  | #include <numeric> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "absl/log/check.h" | 
|  | #include "ceres/cost_function.h" | 
|  | #include "ceres/dynamic_cost_function_to_functor.h" | 
|  | #include "ceres/internal/parameter_dims.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres { | 
|  |  | 
|  | template <int kNumResiduals, int... Ns> | 
|  | class CostFunctionToFunctor { | 
|  | public: | 
|  | // Takes ownership of cost_function. | 
|  | explicit CostFunctionToFunctor(CostFunction* cost_function) | 
|  | : CostFunctionToFunctor{std::unique_ptr<CostFunction>{cost_function}} {} | 
|  |  | 
|  | // Takes ownership of cost_function. | 
|  | explicit CostFunctionToFunctor(std::unique_ptr<CostFunction> cost_function) | 
|  | : cost_functor_(std::move(cost_function)) { | 
|  | CHECK(cost_functor_.function() != nullptr); | 
|  | CHECK(kNumResiduals > 0 || kNumResiduals == DYNAMIC); | 
|  |  | 
|  | const std::vector<int32_t>& parameter_block_sizes = | 
|  | cost_functor_.function()->parameter_block_sizes(); | 
|  | const int num_parameter_blocks = ParameterDims::kNumParameterBlocks; | 
|  | CHECK_EQ(static_cast<int>(parameter_block_sizes.size()), | 
|  | num_parameter_blocks); | 
|  |  | 
|  | if (parameter_block_sizes.size() == num_parameter_blocks) { | 
|  | for (int block = 0; block < num_parameter_blocks; ++block) { | 
|  | CHECK_EQ(ParameterDims::GetDim(block), parameter_block_sizes[block]) | 
|  | << "Parameter block size mismatch. The specified static parameter " | 
|  | "block dimension does not match the one from the cost function."; | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK_EQ(accumulate( | 
|  | parameter_block_sizes.begin(), parameter_block_sizes.end(), 0), | 
|  | ParameterDims::kNumParameters); | 
|  | } | 
|  |  | 
|  | template <typename T, typename... Ts> | 
|  | bool operator()(const T* p1, Ts*... ps) const { | 
|  | // Add one because of residual block. | 
|  | static_assert(sizeof...(Ts) + 1 == ParameterDims::kNumParameterBlocks + 1, | 
|  | "Invalid number of parameter blocks specified."); | 
|  |  | 
|  | auto params = std::make_tuple(p1, ps...); | 
|  |  | 
|  | // Extract residual pointer from params. The residual pointer is the | 
|  | // last pointer. | 
|  | constexpr int kResidualIndex = ParameterDims::kNumParameterBlocks; | 
|  | T* residuals = std::get<kResidualIndex>(params); | 
|  |  | 
|  | // Extract parameter block pointers from params. | 
|  | using Indices = | 
|  | std::make_integer_sequence<int, ParameterDims::kNumParameterBlocks>; | 
|  | std::array<const T*, ParameterDims::kNumParameterBlocks> parameter_blocks = | 
|  | GetParameterPointers<T>(params, Indices()); | 
|  |  | 
|  | return cost_functor_(parameter_blocks.data(), residuals); | 
|  | } | 
|  |  | 
|  | private: | 
|  | using ParameterDims = internal::StaticParameterDims<Ns...>; | 
|  |  | 
|  | template <typename T, typename Tuple, int... Indices> | 
|  | static std::array<const T*, ParameterDims::kNumParameterBlocks> | 
|  | GetParameterPointers(const Tuple& paramPointers, | 
|  | std::integer_sequence<int, Indices...>) { | 
|  | return std::array<const T*, ParameterDims::kNumParameterBlocks>{ | 
|  | {std::get<Indices>(paramPointers)...}}; | 
|  | } | 
|  |  | 
|  | DynamicCostFunctionToFunctor cost_functor_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres | 
|  |  | 
|  | #endif  // CERES_PUBLIC_COST_FUNCTION_TO_FUNCTOR_H_ |