|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #include "ceres/line_search.h" | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cmath> | 
|  | #include <iomanip> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <ostream>  // NOLINT | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include "absl/log/check.h" | 
|  | #include "absl/log/log.h" | 
|  | #include "ceres/evaluator.h" | 
|  | #include "ceres/function_sample.h" | 
|  | #include "ceres/internal/eigen.h" | 
|  | #include "ceres/map_util.h" | 
|  | #include "ceres/polynomial.h" | 
|  | #include "ceres/stringprintf.h" | 
|  | #include "ceres/wall_time.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | namespace { | 
|  | // Precision used for floating point values in error message output. | 
|  | const int kErrorMessageNumericPrecision = 8; | 
|  | }  // namespace | 
|  |  | 
|  | std::ostream& operator<<(std::ostream& os, const FunctionSample& sample); | 
|  |  | 
|  | // Convenience stream operator for pushing FunctionSamples into log messages. | 
|  | std::ostream& operator<<(std::ostream& os, const FunctionSample& sample) { | 
|  | os << sample.ToDebugString(); | 
|  | return os; | 
|  | } | 
|  |  | 
|  | LineSearch::~LineSearch() = default; | 
|  |  | 
|  | LineSearch::LineSearch(const LineSearch::Options& options) | 
|  | : options_(options) {} | 
|  |  | 
|  | std::unique_ptr<LineSearch> LineSearch::Create( | 
|  | const LineSearchType line_search_type, | 
|  | const LineSearch::Options& options, | 
|  | std::string* error) { | 
|  | switch (line_search_type) { | 
|  | case ceres::ARMIJO: | 
|  | return std::make_unique<ArmijoLineSearch>(options); | 
|  | case ceres::WOLFE: | 
|  | return std::make_unique<WolfeLineSearch>(options); | 
|  | default: | 
|  | *error = std::string("Invalid line search algorithm type: ") + | 
|  | LineSearchTypeToString(line_search_type) + | 
|  | std::string(", unable to create line search."); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | LineSearchFunction::LineSearchFunction(Evaluator* evaluator) | 
|  | : evaluator_(evaluator), | 
|  | position_(evaluator->NumParameters()), | 
|  | direction_(evaluator->NumEffectiveParameters()), | 
|  | scaled_direction_(evaluator->NumEffectiveParameters()), | 
|  | initial_evaluator_residual_time_in_seconds(0.0), | 
|  | initial_evaluator_jacobian_time_in_seconds(0.0) {} | 
|  |  | 
|  | void LineSearchFunction::Init(const Vector& position, const Vector& direction) { | 
|  | position_ = position; | 
|  | direction_ = direction; | 
|  | } | 
|  |  | 
|  | void LineSearchFunction::Evaluate(const double x, | 
|  | const bool evaluate_gradient, | 
|  | FunctionSample* output) { | 
|  | output->x = x; | 
|  | output->vector_x_is_valid = false; | 
|  | output->value_is_valid = false; | 
|  | output->gradient_is_valid = false; | 
|  | output->vector_gradient_is_valid = false; | 
|  |  | 
|  | scaled_direction_ = output->x * direction_; | 
|  | output->vector_x.resize(position_.rows(), 1); | 
|  | if (!evaluator_->Plus(position_.data(), | 
|  | scaled_direction_.data(), | 
|  | output->vector_x.data())) { | 
|  | return; | 
|  | } | 
|  | output->vector_x_is_valid = true; | 
|  |  | 
|  | double* gradient = nullptr; | 
|  | if (evaluate_gradient) { | 
|  | output->vector_gradient.resize(direction_.rows(), 1); | 
|  | gradient = output->vector_gradient.data(); | 
|  | } | 
|  | const bool eval_status = evaluator_->Evaluate( | 
|  | output->vector_x.data(), &(output->value), nullptr, gradient, nullptr); | 
|  |  | 
|  | if (!eval_status || !std::isfinite(output->value)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | output->value_is_valid = true; | 
|  | if (!evaluate_gradient) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | output->gradient = direction_.dot(output->vector_gradient); | 
|  | if (!std::isfinite(output->gradient)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | output->gradient_is_valid = true; | 
|  | output->vector_gradient_is_valid = true; | 
|  | } | 
|  |  | 
|  | double LineSearchFunction::DirectionInfinityNorm() const { | 
|  | return direction_.lpNorm<Eigen::Infinity>(); | 
|  | } | 
|  |  | 
|  | void LineSearchFunction::ResetTimeStatistics() { | 
|  | const std::map<std::string, CallStatistics> evaluator_statistics = | 
|  | evaluator_->Statistics(); | 
|  |  | 
|  | initial_evaluator_residual_time_in_seconds = | 
|  | FindWithDefault( | 
|  | evaluator_statistics, "Evaluator::Residual", CallStatistics()) | 
|  | .time; | 
|  | initial_evaluator_jacobian_time_in_seconds = | 
|  | FindWithDefault( | 
|  | evaluator_statistics, "Evaluator::Jacobian", CallStatistics()) | 
|  | .time; | 
|  | } | 
|  |  | 
|  | void LineSearchFunction::TimeStatistics( | 
|  | double* cost_evaluation_time_in_seconds, | 
|  | double* gradient_evaluation_time_in_seconds) const { | 
|  | const std::map<std::string, CallStatistics> evaluator_time_statistics = | 
|  | evaluator_->Statistics(); | 
|  | *cost_evaluation_time_in_seconds = | 
|  | FindWithDefault( | 
|  | evaluator_time_statistics, "Evaluator::Residual", CallStatistics()) | 
|  | .time - | 
|  | initial_evaluator_residual_time_in_seconds; | 
|  | // Strictly speaking this will slightly underestimate the time spent | 
|  | // evaluating the gradient of the line search univariate cost function as it | 
|  | // does not count the time spent performing the dot product with the direction | 
|  | // vector.  However, this will typically be small by comparison, and also | 
|  | // allows direct subtraction of the timing information from the totals for | 
|  | // the evaluator returned in the solver summary. | 
|  | *gradient_evaluation_time_in_seconds = | 
|  | FindWithDefault( | 
|  | evaluator_time_statistics, "Evaluator::Jacobian", CallStatistics()) | 
|  | .time - | 
|  | initial_evaluator_jacobian_time_in_seconds; | 
|  | } | 
|  |  | 
|  | void LineSearch::Search(double step_size_estimate, | 
|  | double initial_cost, | 
|  | double initial_gradient, | 
|  | Summary* summary) const { | 
|  | const double start_time = WallTimeInSeconds(); | 
|  | CHECK(summary != nullptr); | 
|  | *summary = LineSearch::Summary(); | 
|  |  | 
|  | summary->cost_evaluation_time_in_seconds = 0.0; | 
|  | summary->gradient_evaluation_time_in_seconds = 0.0; | 
|  | summary->polynomial_minimization_time_in_seconds = 0.0; | 
|  | options().function->ResetTimeStatistics(); | 
|  | this->DoSearch(step_size_estimate, initial_cost, initial_gradient, summary); | 
|  | options().function->TimeStatistics( | 
|  | &summary->cost_evaluation_time_in_seconds, | 
|  | &summary->gradient_evaluation_time_in_seconds); | 
|  |  | 
|  | summary->total_time_in_seconds = WallTimeInSeconds() - start_time; | 
|  | } | 
|  |  | 
|  | // Returns step_size \in [min_step_size, max_step_size] which minimizes the | 
|  | // polynomial of degree defined by interpolation_type which interpolates all | 
|  | // of the provided samples with valid values. | 
|  | double LineSearch::InterpolatingPolynomialMinimizingStepSize( | 
|  | const LineSearchInterpolationType& interpolation_type, | 
|  | const FunctionSample& lowerbound, | 
|  | const FunctionSample& previous, | 
|  | const FunctionSample& current, | 
|  | const double min_step_size, | 
|  | const double max_step_size) const { | 
|  | if (!current.value_is_valid || | 
|  | (interpolation_type == BISECTION && max_step_size <= current.x)) { | 
|  | // Either: sample is invalid; or we are using BISECTION and contracting | 
|  | // the step size. | 
|  | return std::min(std::max(current.x * 0.5, min_step_size), max_step_size); | 
|  | } else if (interpolation_type == BISECTION) { | 
|  | CHECK_GT(max_step_size, current.x); | 
|  | // We are expanding the search (during a Wolfe bracketing phase) using | 
|  | // BISECTION interpolation.  Using BISECTION when trying to expand is | 
|  | // strictly speaking an oxymoron, but we define this to mean always taking | 
|  | // the maximum step size so that the Armijo & Wolfe implementations are | 
|  | // agnostic to the interpolation type. | 
|  | return max_step_size; | 
|  | } | 
|  | // Only check if lower-bound is valid here, where it is required | 
|  | // to avoid replicating current.value_is_valid == false | 
|  | // behaviour in WolfeLineSearch. | 
|  | CHECK(lowerbound.value_is_valid) | 
|  | << std::scientific << std::setprecision(kErrorMessageNumericPrecision) | 
|  | << "Ceres bug: lower-bound sample for interpolation is invalid, " | 
|  | << "please contact the developers!, interpolation_type: " | 
|  | << LineSearchInterpolationTypeToString(interpolation_type) | 
|  | << ", lowerbound: " << lowerbound << ", previous: " << previous | 
|  | << ", current: " << current; | 
|  |  | 
|  | // Select step size by interpolating the function and gradient values | 
|  | // and minimizing the corresponding polynomial. | 
|  | std::vector<FunctionSample> samples; | 
|  | samples.push_back(lowerbound); | 
|  |  | 
|  | if (interpolation_type == QUADRATIC) { | 
|  | // Two point interpolation using function values and the | 
|  | // gradient at the lower bound. | 
|  | samples.emplace_back(current.x, current.value); | 
|  |  | 
|  | if (previous.value_is_valid) { | 
|  | // Three point interpolation, using function values and the | 
|  | // gradient at the lower bound. | 
|  | samples.emplace_back(previous.x, previous.value); | 
|  | } | 
|  | } else if (interpolation_type == CUBIC) { | 
|  | // Two point interpolation using the function values and the gradients. | 
|  | samples.push_back(current); | 
|  |  | 
|  | if (previous.value_is_valid) { | 
|  | // Three point interpolation using the function values and | 
|  | // the gradients. | 
|  | samples.push_back(previous); | 
|  | } | 
|  | } else { | 
|  | LOG(FATAL) << "Ceres bug: No handler for interpolation_type: " | 
|  | << LineSearchInterpolationTypeToString(interpolation_type) | 
|  | << ", please contact the developers!"; | 
|  | } | 
|  |  | 
|  | double step_size = 0.0, unused_min_value = 0.0; | 
|  | MinimizeInterpolatingPolynomial( | 
|  | samples, min_step_size, max_step_size, &step_size, &unused_min_value); | 
|  | return step_size; | 
|  | } | 
|  |  | 
|  | ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options) | 
|  | : LineSearch(options) {} | 
|  |  | 
|  | void ArmijoLineSearch::DoSearch(const double step_size_estimate, | 
|  | const double initial_cost, | 
|  | const double initial_gradient, | 
|  | Summary* summary) const { | 
|  | CHECK_GE(step_size_estimate, 0.0); | 
|  | CHECK_GT(options().sufficient_decrease, 0.0); | 
|  | CHECK_LT(options().sufficient_decrease, 1.0); | 
|  | CHECK_GT(options().max_num_iterations, 0); | 
|  | LineSearchFunction* function = options().function; | 
|  |  | 
|  | // Note initial_cost & initial_gradient are evaluated at step_size = 0, | 
|  | // not step_size_estimate, which is our starting guess. | 
|  | FunctionSample initial_position(0.0, initial_cost, initial_gradient); | 
|  | initial_position.vector_x = function->position(); | 
|  | initial_position.vector_x_is_valid = true; | 
|  |  | 
|  | const double descent_direction_max_norm = function->DirectionInfinityNorm(); | 
|  | FunctionSample previous; | 
|  | FunctionSample current; | 
|  |  | 
|  | // As the Armijo line search algorithm always uses the initial point, for | 
|  | // which both the function value and derivative are known, when fitting a | 
|  | // minimizing polynomial, we can fit up to a quadratic without requiring the | 
|  | // gradient at the current query point. | 
|  | const bool kEvaluateGradient = options().interpolation_type == CUBIC; | 
|  |  | 
|  | ++summary->num_function_evaluations; | 
|  | if (kEvaluateGradient) { | 
|  | ++summary->num_gradient_evaluations; | 
|  | } | 
|  |  | 
|  | function->Evaluate(step_size_estimate, kEvaluateGradient, ¤t); | 
|  | while (!current.value_is_valid || | 
|  | current.value > (initial_cost + options().sufficient_decrease * | 
|  | initial_gradient * current.x)) { | 
|  | // If current.value_is_valid is false, we treat it as if the cost at that | 
|  | // point is not large enough to satisfy the sufficient decrease condition. | 
|  | ++summary->num_iterations; | 
|  | if (summary->num_iterations >= options().max_num_iterations) { | 
|  | summary->error = StringPrintf( | 
|  | "Line search failed: Armijo failed to find a point " | 
|  | "satisfying the sufficient decrease condition within " | 
|  | "specified max_num_iterations: %d.", | 
|  | options().max_num_iterations); | 
|  | if (!options().is_silent) { | 
|  | LOG(WARNING) << summary->error; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | const double polynomial_minimization_start_time = WallTimeInSeconds(); | 
|  | const double step_size = this->InterpolatingPolynomialMinimizingStepSize( | 
|  | options().interpolation_type, | 
|  | initial_position, | 
|  | previous, | 
|  | current, | 
|  | (options().max_step_contraction * current.x), | 
|  | (options().min_step_contraction * current.x)); | 
|  | summary->polynomial_minimization_time_in_seconds += | 
|  | (WallTimeInSeconds() - polynomial_minimization_start_time); | 
|  |  | 
|  | if (step_size * descent_direction_max_norm < options().min_step_size) { | 
|  | summary->error = StringPrintf( | 
|  | "Line search failed: step_size too small: %.5e " | 
|  | "with descent_direction_max_norm: %.5e.", | 
|  | step_size, | 
|  | descent_direction_max_norm); | 
|  | if (!options().is_silent) { | 
|  | LOG(WARNING) << summary->error; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | previous = current; | 
|  |  | 
|  | ++summary->num_function_evaluations; | 
|  | if (kEvaluateGradient) { | 
|  | ++summary->num_gradient_evaluations; | 
|  | } | 
|  |  | 
|  | function->Evaluate(step_size, kEvaluateGradient, ¤t); | 
|  | } | 
|  |  | 
|  | summary->optimal_point = current; | 
|  | summary->success = true; | 
|  | } | 
|  |  | 
|  | WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options) | 
|  | : LineSearch(options) {} | 
|  |  | 
|  | void WolfeLineSearch::DoSearch(const double step_size_estimate, | 
|  | const double initial_cost, | 
|  | const double initial_gradient, | 
|  | Summary* summary) const { | 
|  | // All parameters should have been validated by the Solver, but as | 
|  | // invalid values would produce crazy nonsense, hard check them here. | 
|  | CHECK_GE(step_size_estimate, 0.0); | 
|  | CHECK_GT(options().sufficient_decrease, 0.0); | 
|  | CHECK_GT(options().sufficient_curvature_decrease, | 
|  | options().sufficient_decrease); | 
|  | CHECK_LT(options().sufficient_curvature_decrease, 1.0); | 
|  | CHECK_GT(options().max_step_expansion, 1.0); | 
|  |  | 
|  | // Note initial_cost & initial_gradient are evaluated at step_size = 0, | 
|  | // not step_size_estimate, which is our starting guess. | 
|  | FunctionSample initial_position(0.0, initial_cost, initial_gradient); | 
|  | initial_position.vector_x = options().function->position(); | 
|  | initial_position.vector_x_is_valid = true; | 
|  | bool do_zoom_search = false; | 
|  | // Important: The high/low in bracket_high & bracket_low refer to their | 
|  | // _function_ values, not their step sizes i.e. it is _not_ required that | 
|  | // bracket_low.x < bracket_high.x. | 
|  | FunctionSample solution, bracket_low, bracket_high; | 
|  |  | 
|  | // Wolfe bracketing phase: Increases step_size until either it finds a point | 
|  | // that satisfies the (strong) Wolfe conditions, or an interval that brackets | 
|  | // step sizes which satisfy the conditions.  From Nocedal & Wright [1] p61 the | 
|  | // interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying | 
|  | // the strong Wolfe conditions if one of the following conditions are met: | 
|  | // | 
|  | //   1. step_size_{k} violates the sufficient decrease (Armijo) condition. | 
|  | //   2. f(step_size_{k}) >= f(step_size_{k-1}). | 
|  | //   3. f'(step_size_{k}) >= 0. | 
|  | // | 
|  | // Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring | 
|  | // this special case, step_size monotonically increases during bracketing. | 
|  | if (!this->BracketingPhase(initial_position, | 
|  | step_size_estimate, | 
|  | &bracket_low, | 
|  | &bracket_high, | 
|  | &do_zoom_search, | 
|  | summary)) { | 
|  | // Failed to find either a valid point, a valid bracket satisfying the Wolfe | 
|  | // conditions, or even a step size > minimum tolerance satisfying the Armijo | 
|  | // condition. | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!do_zoom_search) { | 
|  | // Either: Bracketing phase already found a point satisfying the strong | 
|  | // Wolfe conditions, thus no Zoom required. | 
|  | // | 
|  | // Or: Bracketing failed to find a valid bracket or a point satisfying the | 
|  | // strong Wolfe conditions within max_num_iterations, or whilst searching | 
|  | // shrank the bracket width until it was below our minimum tolerance. | 
|  | // As these are 'artificial' constraints, and we would otherwise fail to | 
|  | // produce a valid point when ArmijoLineSearch would succeed, we return the | 
|  | // point with the lowest cost found thus far which satisfies the Armijo | 
|  | // condition (but not the Wolfe conditions). | 
|  | summary->optimal_point = bracket_low; | 
|  | summary->success = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | VLOG(3) << std::scientific << std::setprecision(kErrorMessageNumericPrecision) | 
|  | << "Starting line search zoom phase with bracket_low: " << bracket_low | 
|  | << ", bracket_high: " << bracket_high | 
|  | << ", bracket width: " << fabs(bracket_low.x - bracket_high.x) | 
|  | << ", bracket abs delta cost: " | 
|  | << fabs(bracket_low.value - bracket_high.value); | 
|  |  | 
|  | // Wolfe Zoom phase: Called when the Bracketing phase finds an interval of | 
|  | // non-zero, finite width that should bracket step sizes which satisfy the | 
|  | // (strong) Wolfe conditions (before finding a step size that satisfies the | 
|  | // conditions).  Zoom successively decreases the size of the interval until a | 
|  | // step size which satisfies the Wolfe conditions is found.  The interval is | 
|  | // defined by bracket_low & bracket_high, which satisfy: | 
|  | // | 
|  | //   1. The interval bounded by step sizes: bracket_low.x & bracket_high.x | 
|  | //      contains step sizes that satisfy the strong Wolfe conditions. | 
|  | //   2. bracket_low.x is of all the step sizes evaluated *which satisfied the | 
|  | //      Armijo sufficient decrease condition*, the one which generated the | 
|  | //      smallest function value, i.e. bracket_low.value < | 
|  | //      f(all other steps satisfying Armijo). | 
|  | //        - Note that this does _not_ (necessarily) mean that initially | 
|  | //          bracket_low.value < bracket_high.value (although this is typical) | 
|  | //          e.g. when bracket_low = initial_position, and bracket_high is the | 
|  | //          first sample, and which does not satisfy the Armijo condition, | 
|  | //          but still has bracket_high.value < initial_position.value. | 
|  | //   3. bracket_high is chosen after bracket_low, s.t. | 
|  | //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0. | 
|  | if (!this->ZoomPhase( | 
|  | initial_position, bracket_low, bracket_high, &solution, summary) && | 
|  | !solution.value_is_valid) { | 
|  | // Failed to find a valid point (given the specified decrease parameters) | 
|  | // within the specified bracket. | 
|  | return; | 
|  | } | 
|  | // Ensure that if we ran out of iterations whilst zooming the bracket, or | 
|  | // shrank the bracket width to < tolerance and failed to find a point which | 
|  | // satisfies the strong Wolfe curvature condition, that we return the point | 
|  | // amongst those found thus far, which minimizes f() and satisfies the Armijo | 
|  | // condition. | 
|  |  | 
|  | if (!solution.value_is_valid || solution.value > bracket_low.value) { | 
|  | summary->optimal_point = bracket_low; | 
|  | } else { | 
|  | summary->optimal_point = solution; | 
|  | } | 
|  |  | 
|  | summary->success = true; | 
|  | } | 
|  |  | 
|  | // Returns true if either: | 
|  | // | 
|  | // A termination condition satisfying the (strong) Wolfe bracketing conditions | 
|  | // is found: | 
|  | // | 
|  | // - A valid point, defined as a bracket of zero width [zoom not required]. | 
|  | // - A valid bracket (of width > tolerance), [zoom required]. | 
|  | // | 
|  | // Or, searching was stopped due to an 'artificial' constraint, i.e. not | 
|  | // a condition imposed / required by the underlying algorithm, but instead an | 
|  | // engineering / implementation consideration. But a step which exceeds the | 
|  | // minimum step size, and satisfies the Armijo condition was still found, | 
|  | // and should thus be used [zoom not required]. | 
|  | // | 
|  | // Returns false if no step size > minimum step size was found which | 
|  | // satisfies at least the Armijo condition. | 
|  | bool WolfeLineSearch::BracketingPhase(const FunctionSample& initial_position, | 
|  | const double step_size_estimate, | 
|  | FunctionSample* bracket_low, | 
|  | FunctionSample* bracket_high, | 
|  | bool* do_zoom_search, | 
|  | Summary* summary) const { | 
|  | LineSearchFunction* function = options().function; | 
|  |  | 
|  | FunctionSample previous = initial_position; | 
|  | FunctionSample current; | 
|  |  | 
|  | const double descent_direction_max_norm = function->DirectionInfinityNorm(); | 
|  |  | 
|  | *do_zoom_search = false; | 
|  | *bracket_low = initial_position; | 
|  |  | 
|  | // As we require the gradient to evaluate the Wolfe condition, we always | 
|  | // calculate it together with the value, irrespective of the interpolation | 
|  | // type.  As opposed to only calculating the gradient after the Armijo | 
|  | // condition is satisfied, as the computational saving from this approach | 
|  | // would be slight (perhaps even negative due to the extra call).  Also, | 
|  | // always calculating the value & gradient together protects against us | 
|  | // reporting invalid solutions if the cost function returns slightly different | 
|  | // function values when evaluated with / without gradients (due to numerical | 
|  | // issues). | 
|  | ++summary->num_function_evaluations; | 
|  | ++summary->num_gradient_evaluations; | 
|  | const bool kEvaluateGradient = true; | 
|  | function->Evaluate(step_size_estimate, kEvaluateGradient, ¤t); | 
|  | while (true) { | 
|  | ++summary->num_iterations; | 
|  |  | 
|  | if (current.value_is_valid && | 
|  | (current.value > (initial_position.value + | 
|  | options().sufficient_decrease * | 
|  | initial_position.gradient * current.x) || | 
|  | (previous.value_is_valid && current.value > previous.value))) { | 
|  | // Bracket found: current step size violates Armijo sufficient decrease | 
|  | // condition, or has stepped past an inflection point of f() relative to | 
|  | // previous step size. | 
|  | *do_zoom_search = true; | 
|  | *bracket_low = previous; | 
|  | *bracket_high = current; | 
|  | VLOG(3) << std::scientific | 
|  | << std::setprecision(kErrorMessageNumericPrecision) | 
|  | << "Bracket found: current step (" << current.x | 
|  | << ") violates Armijo sufficient condition, or has passed an " | 
|  | << "inflection point of f() based on value."; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (current.value_is_valid && | 
|  | fabs(current.gradient) <= -options().sufficient_curvature_decrease * | 
|  | initial_position.gradient) { | 
|  | // Current step size satisfies the strong Wolfe conditions, and is thus a | 
|  | // valid termination point, therefore a Zoom not required. | 
|  | *bracket_low = current; | 
|  | *bracket_high = current; | 
|  | VLOG(3) << std::scientific | 
|  | << std::setprecision(kErrorMessageNumericPrecision) | 
|  | << "Bracketing phase found step size: " << current.x | 
|  | << ", satisfying strong Wolfe conditions, initial_position: " | 
|  | << initial_position << ", current: " << current; | 
|  | break; | 
|  |  | 
|  | } else if (current.value_is_valid && current.gradient >= 0) { | 
|  | // Bracket found: current step size has stepped past an inflection point | 
|  | // of f(), but Armijo sufficient decrease is still satisfied and | 
|  | // f(current) is our best minimum thus far.  Remember step size | 
|  | // monotonically increases, thus previous_step_size < current_step_size | 
|  | // even though f(previous) > f(current). | 
|  | *do_zoom_search = true; | 
|  | // Note inverse ordering from first bracket case. | 
|  | *bracket_low = current; | 
|  | *bracket_high = previous; | 
|  | VLOG(3) << "Bracket found: current step (" << current.x | 
|  | << ") satisfies Armijo, but has gradient >= 0, thus have passed " | 
|  | << "an inflection point of f()."; | 
|  | break; | 
|  |  | 
|  | } else if (current.value_is_valid && | 
|  | fabs(current.x - previous.x) * descent_direction_max_norm < | 
|  | options().min_step_size) { | 
|  | // We have shrunk the search bracket to a width less than our tolerance, | 
|  | // and still not found either a point satisfying the strong Wolfe | 
|  | // conditions, or a valid bracket containing such a point. Stop searching | 
|  | // and set bracket_low to the size size amongst all those tested which | 
|  | // minimizes f() and satisfies the Armijo condition. | 
|  |  | 
|  | if (!options().is_silent) { | 
|  | LOG(WARNING) << "Line search failed: Wolfe bracketing phase shrank " | 
|  | << "bracket width: " << fabs(current.x - previous.x) | 
|  | << ", to < tolerance: " << options().min_step_size | 
|  | << ", with descent_direction_max_norm: " | 
|  | << descent_direction_max_norm << ", and failed to find " | 
|  | << "a point satisfying the strong Wolfe conditions or a " | 
|  | << "bracketing containing such a point. Accepting " | 
|  | << "point found satisfying Armijo condition only, to " | 
|  | << "allow continuation."; | 
|  | } | 
|  | *bracket_low = current; | 
|  | break; | 
|  |  | 
|  | } else if (summary->num_iterations >= options().max_num_iterations) { | 
|  | // Check num iterations bound here so that we always evaluate the | 
|  | // max_num_iterations-th iteration against all conditions, and | 
|  | // then perform no additional (unused) evaluations. | 
|  | summary->error = StringPrintf( | 
|  | "Line search failed: Wolfe bracketing phase failed to " | 
|  | "find a point satisfying strong Wolfe conditions, or a " | 
|  | "bracket containing such a point within specified " | 
|  | "max_num_iterations: %d", | 
|  | options().max_num_iterations); | 
|  | if (!options().is_silent) { | 
|  | LOG(WARNING) << summary->error; | 
|  | } | 
|  | // Ensure that bracket_low is always set to the step size amongst all | 
|  | // those tested which minimizes f() and satisfies the Armijo condition | 
|  | // when we terminate due to the 'artificial' max_num_iterations condition. | 
|  | *bracket_low = | 
|  | current.value_is_valid && current.value < bracket_low->value | 
|  | ? current | 
|  | : *bracket_low; | 
|  | break; | 
|  | } | 
|  | // Either: f(current) is invalid; or, f(current) is valid, but does not | 
|  | // satisfy the strong Wolfe conditions itself, or the conditions for | 
|  | // being a boundary of a bracket. | 
|  |  | 
|  | // If f(current) is valid, (but meets no criteria) expand the search by | 
|  | // increasing the step size.  If f(current) is invalid, contract the step | 
|  | // size. | 
|  | // | 
|  | // In Nocedal & Wright [1] (p60), the step-size can only increase in the | 
|  | // bracketing phase: step_size_{k+1} \in [step_size_k, step_size_k * | 
|  | // factor]. However this does not account for the function returning invalid | 
|  | // values which we support, in which case we need to contract the step size | 
|  | // whilst ensuring that we do not invert the bracket, i.e, we require that: | 
|  | // step_size_{k-1} <= step_size_{k+1} < step_size_k. | 
|  | const double min_step_size = | 
|  | current.value_is_valid ? current.x : previous.x; | 
|  | const double max_step_size = | 
|  | current.value_is_valid ? (current.x * options().max_step_expansion) | 
|  | : current.x; | 
|  |  | 
|  | // We are performing 2-point interpolation only here, but the API of | 
|  | // InterpolatingPolynomialMinimizingStepSize() allows for up to | 
|  | // 3-point interpolation, so pad call with a sample with an invalid | 
|  | // value that will therefore be ignored. | 
|  | const FunctionSample unused_previous; | 
|  | DCHECK(!unused_previous.value_is_valid); | 
|  | // Contracts step size if f(current) is not valid. | 
|  | const double polynomial_minimization_start_time = WallTimeInSeconds(); | 
|  | const double step_size = this->InterpolatingPolynomialMinimizingStepSize( | 
|  | options().interpolation_type, | 
|  | previous, | 
|  | unused_previous, | 
|  | current, | 
|  | min_step_size, | 
|  | max_step_size); | 
|  | summary->polynomial_minimization_time_in_seconds += | 
|  | (WallTimeInSeconds() - polynomial_minimization_start_time); | 
|  | if (step_size * descent_direction_max_norm < options().min_step_size) { | 
|  | summary->error = StringPrintf( | 
|  | "Line search failed: step_size too small: %.5e " | 
|  | "with descent_direction_max_norm: %.5e", | 
|  | step_size, | 
|  | descent_direction_max_norm); | 
|  | if (!options().is_silent) { | 
|  | LOG(WARNING) << summary->error; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Only advance the lower boundary (in x) of the bracket if f(current) | 
|  | // is valid such that we can support contracting the step size when | 
|  | // f(current) is invalid without risking inverting the bracket in x, i.e. | 
|  | // prevent previous.x > current.x. | 
|  | previous = current.value_is_valid ? current : previous; | 
|  | ++summary->num_function_evaluations; | 
|  | ++summary->num_gradient_evaluations; | 
|  | function->Evaluate(step_size, kEvaluateGradient, ¤t); | 
|  | } | 
|  |  | 
|  | // Ensure that even if a valid bracket was found, we will only mark a zoom | 
|  | // as required if the bracket's width is greater than our minimum tolerance. | 
|  | if (*do_zoom_search && | 
|  | fabs(bracket_high->x - bracket_low->x) * descent_direction_max_norm < | 
|  | options().min_step_size) { | 
|  | *do_zoom_search = false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Returns true iff solution satisfies the strong Wolfe conditions. Otherwise, | 
|  | // on return false, if we stopped searching due to the 'artificial' condition of | 
|  | // reaching max_num_iterations, solution is the step size amongst all those | 
|  | // tested, which satisfied the Armijo decrease condition and minimized f(). | 
|  | bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position, | 
|  | FunctionSample bracket_low, | 
|  | FunctionSample bracket_high, | 
|  | FunctionSample* solution, | 
|  | Summary* summary) const { | 
|  | LineSearchFunction* function = options().function; | 
|  |  | 
|  | CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid) | 
|  | << std::scientific << std::setprecision(kErrorMessageNumericPrecision) | 
|  | << "Ceres bug: f_low input to Wolfe Zoom invalid, please contact " | 
|  | << "the developers!, initial_position: " << initial_position | 
|  | << ", bracket_low: " << bracket_low << ", bracket_high: " << bracket_high; | 
|  | // We do not require bracket_high.gradient_is_valid as the gradient condition | 
|  | // for a valid bracket is only dependent upon bracket_low.gradient, and | 
|  | // in order to minimize jacobian evaluations, bracket_high.gradient may | 
|  | // not have been calculated (if bracket_high.value does not satisfy the | 
|  | // Armijo sufficient decrease condition and interpolation method does not | 
|  | // require it). | 
|  | // | 
|  | // We also do not require that: bracket_low.value < bracket_high.value, | 
|  | // although this is typical. This is to deal with the case when | 
|  | // bracket_low = initial_position, bracket_high is the first sample, | 
|  | // and bracket_high does not satisfy the Armijo condition, but still has | 
|  | // bracket_high.value < initial_position.value. | 
|  | CHECK(bracket_high.value_is_valid) | 
|  | << std::scientific << std::setprecision(kErrorMessageNumericPrecision) | 
|  | << "Ceres bug: f_high input to Wolfe Zoom invalid, please " | 
|  | << "contact the developers!, initial_position: " << initial_position | 
|  | << ", bracket_low: " << bracket_low << ", bracket_high: " << bracket_high; | 
|  |  | 
|  | if (bracket_low.gradient * (bracket_high.x - bracket_low.x) >= 0) { | 
|  | // The third condition for a valid initial bracket: | 
|  | // | 
|  | //   3. bracket_high is chosen after bracket_low, s.t. | 
|  | //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0. | 
|  | // | 
|  | // is not satisfied.  As this can happen when the users' cost function | 
|  | // returns inconsistent gradient values relative to the function values, | 
|  | // we do not CHECK_LT(), but we do stop processing and return an invalid | 
|  | // value. | 
|  | summary->error = StringPrintf( | 
|  | "Line search failed: Wolfe zoom phase passed a bracket " | 
|  | "which does not satisfy: bracket_low.gradient * " | 
|  | "(bracket_high.x - bracket_low.x) < 0 [%.8e !< 0] " | 
|  | "with initial_position: %s, bracket_low: %s, bracket_high:" | 
|  | " %s, the most likely cause of which is the cost function " | 
|  | "returning inconsistent gradient & function values.", | 
|  | bracket_low.gradient * (bracket_high.x - bracket_low.x), | 
|  | initial_position.ToDebugString().c_str(), | 
|  | bracket_low.ToDebugString().c_str(), | 
|  | bracket_high.ToDebugString().c_str()); | 
|  | if (!options().is_silent) { | 
|  | LOG(WARNING) << summary->error; | 
|  | } | 
|  | solution->value_is_valid = false; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const int num_bracketing_iterations = summary->num_iterations; | 
|  | const double descent_direction_max_norm = function->DirectionInfinityNorm(); | 
|  |  | 
|  | while (true) { | 
|  | // Set solution to bracket_low, as it is our best step size (smallest f()) | 
|  | // found thus far and satisfies the Armijo condition, even though it does | 
|  | // not satisfy the Wolfe condition. | 
|  | *solution = bracket_low; | 
|  | if (summary->num_iterations >= options().max_num_iterations) { | 
|  | summary->error = StringPrintf( | 
|  | "Line search failed: Wolfe zoom phase failed to " | 
|  | "find a point satisfying strong Wolfe conditions " | 
|  | "within specified max_num_iterations: %d, " | 
|  | "(num iterations taken for bracketing: %d).", | 
|  | options().max_num_iterations, | 
|  | num_bracketing_iterations); | 
|  | if (!options().is_silent) { | 
|  | LOG(WARNING) << summary->error; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm < | 
|  | options().min_step_size) { | 
|  | // Bracket width has been reduced below tolerance, and no point satisfying | 
|  | // the strong Wolfe conditions has been found. | 
|  | summary->error = StringPrintf( | 
|  | "Line search failed: Wolfe zoom bracket width: %.5e " | 
|  | "too small with descent_direction_max_norm: %.5e.", | 
|  | fabs(bracket_high.x - bracket_low.x), | 
|  | descent_direction_max_norm); | 
|  | if (!options().is_silent) { | 
|  | LOG(WARNING) << summary->error; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ++summary->num_iterations; | 
|  | // Polynomial interpolation requires inputs ordered according to step size, | 
|  | // not f(step size). | 
|  | const FunctionSample& lower_bound_step = | 
|  | bracket_low.x < bracket_high.x ? bracket_low : bracket_high; | 
|  | const FunctionSample& upper_bound_step = | 
|  | bracket_low.x < bracket_high.x ? bracket_high : bracket_low; | 
|  | // We are performing 2-point interpolation only here, but the API of | 
|  | // InterpolatingPolynomialMinimizingStepSize() allows for up to | 
|  | // 3-point interpolation, so pad call with a sample with an invalid | 
|  | // value that will therefore be ignored. | 
|  | const FunctionSample unused_previous; | 
|  | DCHECK(!unused_previous.value_is_valid); | 
|  | const double polynomial_minimization_start_time = WallTimeInSeconds(); | 
|  | const double step_size = this->InterpolatingPolynomialMinimizingStepSize( | 
|  | options().interpolation_type, | 
|  | lower_bound_step, | 
|  | unused_previous, | 
|  | upper_bound_step, | 
|  | lower_bound_step.x, | 
|  | upper_bound_step.x); | 
|  | summary->polynomial_minimization_time_in_seconds += | 
|  | (WallTimeInSeconds() - polynomial_minimization_start_time); | 
|  | // No check on magnitude of step size being too small here as it is | 
|  | // lower-bounded by the initial bracket start point, which was valid. | 
|  | // | 
|  | // As we require the gradient to evaluate the Wolfe condition, we always | 
|  | // calculate it together with the value, irrespective of the interpolation | 
|  | // type.  As opposed to only calculating the gradient after the Armijo | 
|  | // condition is satisfied, as the computational saving from this approach | 
|  | // would be slight (perhaps even negative due to the extra call).  Also, | 
|  | // always calculating the value & gradient together protects against us | 
|  | // reporting invalid solutions if the cost function returns slightly | 
|  | // different function values when evaluated with / without gradients (due | 
|  | // to numerical issues). | 
|  | ++summary->num_function_evaluations; | 
|  | ++summary->num_gradient_evaluations; | 
|  | const bool kEvaluateGradient = true; | 
|  | function->Evaluate(step_size, kEvaluateGradient, solution); | 
|  | if (!solution->value_is_valid || !solution->gradient_is_valid) { | 
|  | summary->error = StringPrintf( | 
|  | "Line search failed: Wolfe Zoom phase found " | 
|  | "step_size: %.5e, for which function is invalid, " | 
|  | "between low_step: %.5e and high_step: %.5e " | 
|  | "at which function is valid.", | 
|  | solution->x, | 
|  | bracket_low.x, | 
|  | bracket_high.x); | 
|  | if (!options().is_silent) { | 
|  | LOG(WARNING) << summary->error; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | VLOG(3) << "Zoom iteration: " | 
|  | << summary->num_iterations - num_bracketing_iterations | 
|  | << ", bracket_low: " << bracket_low | 
|  | << ", bracket_high: " << bracket_high | 
|  | << ", minimizing solution: " << *solution; | 
|  |  | 
|  | if ((solution->value > (initial_position.value + | 
|  | options().sufficient_decrease * | 
|  | initial_position.gradient * solution->x)) || | 
|  | (solution->value >= bracket_low.value)) { | 
|  | // Armijo sufficient decrease not satisfied, or not better | 
|  | // than current lowest sample, use as new upper bound. | 
|  | bracket_high = *solution; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Armijo sufficient decrease satisfied, check strong Wolfe condition. | 
|  | if (fabs(solution->gradient) <= | 
|  | -options().sufficient_curvature_decrease * initial_position.gradient) { | 
|  | // Found a valid termination point satisfying strong Wolfe conditions. | 
|  | VLOG(3) << std::scientific | 
|  | << std::setprecision(kErrorMessageNumericPrecision) | 
|  | << "Zoom phase found step size: " << solution->x | 
|  | << ", satisfying strong Wolfe conditions."; | 
|  | break; | 
|  |  | 
|  | } else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) { | 
|  | bracket_high = bracket_low; | 
|  | } | 
|  |  | 
|  | bracket_low = *solution; | 
|  | } | 
|  | // Solution contains a valid point which satisfies the strong Wolfe | 
|  | // conditions. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace ceres::internal |