|  | // Ceres Solver - A fast non-linear least squares minimizer | 
|  | // Copyright 2023 Google Inc. All rights reserved. | 
|  | // http://ceres-solver.org/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // * Redistributions of source code must retain the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer. | 
|  | // * Redistributions in binary form must reproduce the above copyright notice, | 
|  | //   this list of conditions and the following disclaimer in the documentation | 
|  | //   and/or other materials provided with the distribution. | 
|  | // * Neither the name of Google Inc. nor the names of its contributors may be | 
|  | //   used to endorse or promote products derived from this software without | 
|  | //   specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | 
|  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | 
|  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | 
|  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | 
|  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: sameeragarwal@google.com (Sameer Agarwal) | 
|  |  | 
|  | #ifndef CERES_INTERNAL_PRECONDITIONER_H_ | 
|  | #define CERES_INTERNAL_PRECONDITIONER_H_ | 
|  |  | 
|  | #include <vector> | 
|  |  | 
|  | #include "ceres/casts.h" | 
|  | #include "ceres/compressed_row_sparse_matrix.h" | 
|  | #include "ceres/context_impl.h" | 
|  | #include "ceres/internal/disable_warnings.h" | 
|  | #include "ceres/internal/export.h" | 
|  | #include "ceres/linear_operator.h" | 
|  | #include "ceres/linear_solver.h" | 
|  | #include "ceres/sparse_matrix.h" | 
|  | #include "ceres/types.h" | 
|  |  | 
|  | namespace ceres::internal { | 
|  |  | 
|  | class BlockSparseMatrix; | 
|  | class SparseMatrix; | 
|  |  | 
|  | class CERES_NO_EXPORT Preconditioner : public LinearOperator { | 
|  | public: | 
|  | struct Options { | 
|  | Options() = default; | 
|  | Options(const LinearSolver::Options& linear_solver_options) | 
|  | : type(linear_solver_options.preconditioner_type), | 
|  | visibility_clustering_type( | 
|  | linear_solver_options.visibility_clustering_type), | 
|  | sparse_linear_algebra_library_type( | 
|  | linear_solver_options.sparse_linear_algebra_library_type), | 
|  | num_threads(linear_solver_options.num_threads), | 
|  | elimination_groups(linear_solver_options.elimination_groups), | 
|  | row_block_size(linear_solver_options.row_block_size), | 
|  | e_block_size(linear_solver_options.e_block_size), | 
|  | f_block_size(linear_solver_options.f_block_size), | 
|  | context(linear_solver_options.context) {} | 
|  |  | 
|  | PreconditionerType type = JACOBI; | 
|  | VisibilityClusteringType visibility_clustering_type = CANONICAL_VIEWS; | 
|  | SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type = | 
|  | SUITE_SPARSE; | 
|  | OrderingType ordering_type = OrderingType::NATURAL; | 
|  |  | 
|  | // When using the subset preconditioner, all row blocks starting | 
|  | // from this row block are used to construct the preconditioner. | 
|  | // | 
|  | // i.e., the Jacobian matrix A is horizontally partitioned as | 
|  | // | 
|  | // A = [P] | 
|  | //     [Q] | 
|  | // | 
|  | // where P has subset_preconditioner_start_row_block row blocks, | 
|  | // and the preconditioner is the inverse of the matrix Q'Q. | 
|  | int subset_preconditioner_start_row_block = -1; | 
|  |  | 
|  | // If possible, how many threads the preconditioner can use. | 
|  | int num_threads = 1; | 
|  |  | 
|  | // Hints about the order in which the parameter blocks should be | 
|  | // eliminated by the linear solver. | 
|  | // | 
|  | // For example if elimination_groups is a vector of size k, then | 
|  | // the linear solver is informed that it should eliminate the | 
|  | // parameter blocks 0 ... elimination_groups[0] - 1 first, and | 
|  | // then elimination_groups[0] ... elimination_groups[1] - 1 and so | 
|  | // on. Within each elimination group, the linear solver is free to | 
|  | // choose how the parameter blocks are ordered. Different linear | 
|  | // solvers have differing requirements on elimination_groups. | 
|  | // | 
|  | // The most common use is for Schur type solvers, where there | 
|  | // should be at least two elimination groups and the first | 
|  | // elimination group must form an independent set in the normal | 
|  | // equations. The first elimination group corresponds to the | 
|  | // num_eliminate_blocks in the Schur type solvers. | 
|  | std::vector<int> elimination_groups; | 
|  |  | 
|  | // If the block sizes in a BlockSparseMatrix are fixed, then in | 
|  | // some cases the Schur complement based solvers can detect and | 
|  | // specialize on them. | 
|  | // | 
|  | // It is expected that these parameters are set programmatically | 
|  | // rather than manually. | 
|  | // | 
|  | // Please see schur_complement_solver.h and schur_eliminator.h for | 
|  | // more details. | 
|  | int row_block_size = Eigen::Dynamic; | 
|  | int e_block_size = Eigen::Dynamic; | 
|  | int f_block_size = Eigen::Dynamic; | 
|  |  | 
|  | ContextImpl* context = nullptr; | 
|  | }; | 
|  |  | 
|  | // If the optimization problem is such that there are no remaining | 
|  | // e-blocks, ITERATIVE_SCHUR with a Schur type preconditioner cannot | 
|  | // be used. This function returns JACOBI if a preconditioner for | 
|  | // ITERATIVE_SCHUR is used. The input preconditioner_type is | 
|  | // returned otherwise. | 
|  | static PreconditionerType PreconditionerForZeroEBlocks( | 
|  | PreconditionerType preconditioner_type); | 
|  |  | 
|  | ~Preconditioner() override; | 
|  |  | 
|  | // Update the numerical value of the preconditioner for the linear | 
|  | // system: | 
|  | // | 
|  | //  |   A   | x = |b| | 
|  | //  |diag(D)|     |0| | 
|  | // | 
|  | // for some vector b. It is important that the matrix A have the | 
|  | // same block structure as the one used to construct this object. | 
|  | // | 
|  | // D can be nullptr, in which case its interpreted as a diagonal matrix | 
|  | // of size zero. | 
|  | virtual bool Update(const LinearOperator& A, const double* D) = 0; | 
|  |  | 
|  | // LinearOperator interface. Since the operator is symmetric, | 
|  | // LeftMultiplyAndAccumulate and num_cols are just calls to | 
|  | // RightMultiplyAndAccumulate and num_rows respectively. Update() must be | 
|  | // called before RightMultiplyAndAccumulate can be called. | 
|  | void RightMultiplyAndAccumulate(const double* x, | 
|  | double* y) const override = 0; | 
|  | void LeftMultiplyAndAccumulate(const double* x, double* y) const override { | 
|  | return RightMultiplyAndAccumulate(x, y); | 
|  | } | 
|  |  | 
|  | int num_rows() const override = 0; | 
|  | int num_cols() const override { return num_rows(); } | 
|  | }; | 
|  |  | 
|  | class CERES_NO_EXPORT IdentityPreconditioner : public Preconditioner { | 
|  | public: | 
|  | IdentityPreconditioner(int num_rows) : num_rows_(num_rows) {} | 
|  |  | 
|  | bool Update(const LinearOperator& /*A*/, const double* /*D*/) final { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void RightMultiplyAndAccumulate(const double* x, double* y) const final { | 
|  | VectorRef(y, num_rows_) += ConstVectorRef(x, num_rows_); | 
|  | } | 
|  |  | 
|  | int num_rows() const final { return num_rows_; } | 
|  |  | 
|  | private: | 
|  | int num_rows_ = -1; | 
|  | }; | 
|  |  | 
|  | // This templated subclass of Preconditioner serves as a base class for | 
|  | // other preconditioners that depend on the particular matrix layout of | 
|  | // the underlying linear operator. | 
|  | template <typename MatrixType> | 
|  | class CERES_NO_EXPORT TypedPreconditioner : public Preconditioner { | 
|  | public: | 
|  | bool Update(const LinearOperator& A, const double* D) final { | 
|  | return UpdateImpl(*down_cast<const MatrixType*>(&A), D); | 
|  | } | 
|  |  | 
|  | private: | 
|  | virtual bool UpdateImpl(const MatrixType& A, const double* D) = 0; | 
|  | }; | 
|  |  | 
|  | // Preconditioners that depend on access to the low level structure | 
|  | // of a SparseMatrix. | 
|  | // clang-format off | 
|  | using SparseMatrixPreconditioner = TypedPreconditioner<SparseMatrix>; | 
|  | using BlockSparseMatrixPreconditioner = TypedPreconditioner<BlockSparseMatrix>; | 
|  | using CompressedRowSparseMatrixPreconditioner = TypedPreconditioner<CompressedRowSparseMatrix>; | 
|  | // clang-format on | 
|  |  | 
|  | // Wrap a SparseMatrix object as a preconditioner. | 
|  | class CERES_NO_EXPORT SparseMatrixPreconditionerWrapper final | 
|  | : public SparseMatrixPreconditioner { | 
|  | public: | 
|  | // Wrapper does NOT take ownership of the matrix pointer. | 
|  | explicit SparseMatrixPreconditionerWrapper( | 
|  | const SparseMatrix* matrix, const Preconditioner::Options& options); | 
|  | ~SparseMatrixPreconditionerWrapper() override; | 
|  |  | 
|  | // Preconditioner interface | 
|  | void RightMultiplyAndAccumulate(const double* x, double* y) const override; | 
|  | int num_rows() const override; | 
|  |  | 
|  | private: | 
|  | bool UpdateImpl(const SparseMatrix& A, const double* D) override; | 
|  | const SparseMatrix* matrix_; | 
|  | const Preconditioner::Options options_; | 
|  | }; | 
|  |  | 
|  | }  // namespace ceres::internal | 
|  |  | 
|  | #include "ceres/internal/reenable_warnings.h" | 
|  |  | 
|  | #endif  // CERES_INTERNAL_PRECONDITIONER_H_ |