blob: 9089aef1834f1d064d8334e55a16412d4fb9b12f [file] [log] [blame]
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2023 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
// sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/solver.h"
#include <algorithm>
#include <map>
#include <memory>
#include <sstream> // NOLINT
#include <string>
#include <vector>
#include "absl/log/check.h"
#include "absl/log/log.h"
#include "ceres/casts.h"
#include "ceres/context.h"
#include "ceres/context_impl.h"
#include "ceres/cuda_sparse_cholesky.h"
#include "ceres/detect_structure.h"
#include "ceres/eigensparse.h"
#include "ceres/gradient_checking_cost_function.h"
#include "ceres/internal/export.h"
#include "ceres/parameter_block_ordering.h"
#include "ceres/preprocessor.h"
#include "ceres/problem.h"
#include "ceres/problem_impl.h"
#include "ceres/program.h"
#include "ceres/schur_templates.h"
#include "ceres/solver_utils.h"
#include "ceres/stringprintf.h"
#include "ceres/suitesparse.h"
#include "ceres/types.h"
#include "ceres/wall_time.h"
namespace ceres {
namespace {
using internal::StringAppendF;
using internal::StringPrintf;
#define OPTION_OP(x, y, OP) \
if (!(options.x OP y)) { \
std::stringstream ss; \
ss << "Invalid configuration. "; \
ss << std::string("Solver::Options::" #x " = ") << options.x << ". "; \
ss << "Violated constraint: "; \
ss << std::string("Solver::Options::" #x " " #OP " " #y); \
*error = ss.str(); \
return false; \
}
#define OPTION_OP_OPTION(x, y, OP) \
if (!(options.x OP options.y)) { \
std::stringstream ss; \
ss << "Invalid configuration. "; \
ss << std::string("Solver::Options::" #x " = ") << options.x << ". "; \
ss << std::string("Solver::Options::" #y " = ") << options.y << ". "; \
ss << "Violated constraint: "; \
ss << std::string("Solver::Options::" #x); \
ss << std::string(#OP " Solver::Options::" #y "."); \
*error = ss.str(); \
return false; \
}
#define OPTION_GE(x, y) OPTION_OP(x, y, >=);
#define OPTION_GT(x, y) OPTION_OP(x, y, >);
#define OPTION_LE(x, y) OPTION_OP(x, y, <=);
#define OPTION_LT(x, y) OPTION_OP(x, y, <);
#define OPTION_LE_OPTION(x, y) OPTION_OP_OPTION(x, y, <=)
#define OPTION_LT_OPTION(x, y) OPTION_OP_OPTION(x, y, <)
bool CommonOptionsAreValid(const Solver::Options& options, std::string* error) {
OPTION_GE(max_num_iterations, 0);
OPTION_GE(max_solver_time_in_seconds, 0.0);
OPTION_GE(function_tolerance, 0.0);
OPTION_GE(gradient_tolerance, 0.0);
OPTION_GE(parameter_tolerance, 0.0);
OPTION_GT(num_threads, 0);
if (options.check_gradients) {
OPTION_GT(gradient_check_relative_precision, 0.0);
OPTION_GT(gradient_check_numeric_derivative_relative_step_size, 0.0);
}
return true;
}
bool IsNestedDissectionAvailable(SparseLinearAlgebraLibraryType type) {
return (((type == SUITE_SPARSE) &&
internal::SuiteSparse::IsNestedDissectionAvailable()) ||
(type == ACCELERATE_SPARSE) ||
((type == EIGEN_SPARSE) &&
internal::EigenSparse::IsNestedDissectionAvailable())
#ifndef CERES_NO_CUDSS
|| ((type == CUDA_SPARSE) &&
internal::CudaSparseCholesky<>::IsNestedDissectionAvailable())
#endif
);
}
bool IsIterativeSolver(LinearSolverType type) {
return (type == CGNR || type == ITERATIVE_SCHUR);
}
bool OptionsAreValidForDenseSolver(const Solver::Options& options,
std::string* error) {
const char* library_name = DenseLinearAlgebraLibraryTypeToString(
options.dense_linear_algebra_library_type);
const char* solver_name =
LinearSolverTypeToString(options.linear_solver_type);
constexpr char kFormat[] =
"Can't use %s with dense_linear_algebra_library_type = %s "
"because support not enabled when Ceres was built.";
if (!IsDenseLinearAlgebraLibraryTypeAvailable(
options.dense_linear_algebra_library_type)) {
*error = StringPrintf(kFormat, solver_name, library_name);
return false;
}
return true;
}
bool OptionsAreValidForSparseCholeskyBasedSolver(const Solver::Options& options,
std::string* error) {
const char* library_name = SparseLinearAlgebraLibraryTypeToString(
options.sparse_linear_algebra_library_type);
// Sparse factorization based solvers and some preconditioners require a
// sparse Cholesky factorization.
const char* solver_name =
IsIterativeSolver(options.linear_solver_type)
? PreconditionerTypeToString(options.preconditioner_type)
: LinearSolverTypeToString(options.linear_solver_type);
constexpr char kNoSparseFormat[] =
"Can't use %s with sparse_linear_algebra_library_type = %s.";
constexpr char kNoLibraryFormat[] =
"Can't use %s sparse_linear_algebra_library_type = %s, because support "
"was not enabled when Ceres Solver was built.";
constexpr char kNoNesdisFormat[] =
"NESDIS is not available with sparse_linear_algebra_library_type = %s.";
constexpr char kMixedFormat[] =
"use_mixed_precision_solves with %s is not supported with "
"sparse_linear_algebra_library_type = %s";
constexpr char kDynamicSparsityFormat[] =
"dynamic sparsity is not supported with "
"sparse_linear_algebra_library_type = %s";
if (options.sparse_linear_algebra_library_type == NO_SPARSE) {
*error = StringPrintf(kNoSparseFormat, solver_name, library_name);
return false;
}
if (IsSparseLinearAlgebraLibraryTypeAvailable(
options.sparse_linear_algebra_library_type)) {
if (options.sparse_linear_algebra_library_type == CUDA_SPARSE) {
#if defined(CERES_NO_CUDSS)
*error = StringPrintf(kNoLibraryFormat, solver_name, library_name);
return false;
#endif
}
} else {
*error = StringPrintf(kNoLibraryFormat, solver_name, library_name);
return false;
}
if (options.linear_solver_ordering_type == ceres::NESDIS &&
!IsNestedDissectionAvailable(
options.sparse_linear_algebra_library_type)) {
*error = StringPrintf(kNoNesdisFormat, library_name);
return false;
}
if (options.use_mixed_precision_solves &&
options.sparse_linear_algebra_library_type == SUITE_SPARSE) {
*error = StringPrintf(kMixedFormat, solver_name, library_name);
return false;
}
if (options.dynamic_sparsity &&
options.sparse_linear_algebra_library_type == ACCELERATE_SPARSE) {
*error = StringPrintf(kDynamicSparsityFormat, library_name);
return false;
}
return true;
}
bool OptionsAreValidForDenseNormalCholesky(const Solver::Options& options,
std::string* error) {
CHECK_EQ(options.linear_solver_type, DENSE_NORMAL_CHOLESKY);
return OptionsAreValidForDenseSolver(options, error);
}
bool OptionsAreValidForDenseQr(const Solver::Options& options,
std::string* error) {
CHECK_EQ(options.linear_solver_type, DENSE_QR);
if (!OptionsAreValidForDenseSolver(options, error)) {
return false;
}
if (options.use_mixed_precision_solves) {
*error = "Can't use use_mixed_precision_solves with DENSE_QR.";
return false;
}
return true;
}
bool OptionsAreValidForSparseNormalCholesky(const Solver::Options& options,
std::string* error) {
CHECK_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY);
return OptionsAreValidForSparseCholeskyBasedSolver(options, error);
}
bool OptionsAreValidForDenseSchur(const Solver::Options& options,
std::string* error) {
CHECK_EQ(options.linear_solver_type, DENSE_SCHUR);
if (options.dynamic_sparsity) {
*error = "dynamic sparsity is only supported with SPARSE_NORMAL_CHOLESKY";
return false;
}
if (!OptionsAreValidForDenseSolver(options, error)) {
return false;
}
return true;
}
bool OptionsAreValidForSparseSchur(const Solver::Options& options,
std::string* error) {
CHECK_EQ(options.linear_solver_type, SPARSE_SCHUR);
if (options.dynamic_sparsity) {
*error = "Dynamic sparsity is only supported with SPARSE_NORMAL_CHOLESKY.";
return false;
}
return OptionsAreValidForSparseCholeskyBasedSolver(options, error);
}
bool OptionsAreValidForIterativeSchur(const Solver::Options& options,
std::string* error) {
CHECK_EQ(options.linear_solver_type, ITERATIVE_SCHUR);
if (options.dynamic_sparsity) {
*error = "Dynamic sparsity is only supported with SPARSE_NORMAL_CHOLESKY.";
return false;
}
if (options.use_explicit_schur_complement) {
if (options.preconditioner_type != SCHUR_JACOBI) {
*error =
"use_explicit_schur_complement only supports "
"SCHUR_JACOBI as the preconditioner.";
return false;
}
if (options.use_spse_initialization) {
*error =
"use_explicit_schur_complement does not support "
"use_spse_initialization.";
return false;
}
}
if (options.use_spse_initialization ||
options.preconditioner_type == SCHUR_POWER_SERIES_EXPANSION) {
OPTION_GE(max_num_spse_iterations, 1)
OPTION_GE(spse_tolerance, 0.0)
}
if (options.use_mixed_precision_solves) {
*error = "Can't use use_mixed_precision_solves with ITERATIVE_SCHUR";
return false;
}
if (options.dynamic_sparsity) {
*error = "Dynamic sparsity is only supported with SPARSE_NORMAL_CHOLESKY.";
return false;
}
if (options.preconditioner_type == SUBSET) {
*error = "Can't use SUBSET preconditioner with ITERATIVE_SCHUR";
return false;
}
// CLUSTER_JACOBI and CLUSTER_TRIDIAGONAL require sparse Cholesky
// factorization.
if (options.preconditioner_type == CLUSTER_JACOBI ||
options.preconditioner_type == CLUSTER_TRIDIAGONAL) {
return OptionsAreValidForSparseCholeskyBasedSolver(options, error);
}
return true;
}
bool OptionsAreValidForCgnr(const Solver::Options& options,
std::string* error) {
CHECK_EQ(options.linear_solver_type, CGNR);
if (options.preconditioner_type != IDENTITY &&
options.preconditioner_type != JACOBI &&
options.preconditioner_type != SUBSET) {
*error =
StringPrintf("Can't use CGNR with preconditioner_type = %s.",
PreconditionerTypeToString(options.preconditioner_type));
return false;
}
if (options.use_mixed_precision_solves) {
*error = "use_mixed_precision_solves cannot be used with CGNR";
return false;
}
if (options.dynamic_sparsity) {
*error = "Dynamic sparsity is only supported with SPARSE_NORMAL_CHOLESKY.";
return false;
}
if (options.preconditioner_type == SUBSET) {
if (options.sparse_linear_algebra_library_type == CUDA_SPARSE) {
*error =
"Can't use CGNR with preconditioner_type = SUBSET when "
"sparse_linear_algebra_library_type = CUDA_SPARSE.";
return false;
}
if (options.residual_blocks_for_subset_preconditioner.empty()) {
*error =
"When using SUBSET preconditioner, "
"residual_blocks_for_subset_preconditioner cannot be empty";
return false;
}
// SUBSET preconditioner requires sparse Cholesky factorization.
if (!OptionsAreValidForSparseCholeskyBasedSolver(options, error)) {
return false;
}
}
// Check options for CGNR with CUDA_SPARSE.
if (options.sparse_linear_algebra_library_type == CUDA_SPARSE) {
if (!IsSparseLinearAlgebraLibraryTypeAvailable(CUDA_SPARSE)) {
*error =
"Can't use CGNR with sparse_linear_algebra_library_type = "
"CUDA_SPARSE because support was not enabled when Ceres was built.";
return false;
}
}
return true;
}
bool OptionsAreValidForLinearSolver(const Solver::Options& options,
std::string* error) {
switch (options.linear_solver_type) {
case DENSE_NORMAL_CHOLESKY:
return OptionsAreValidForDenseNormalCholesky(options, error);
case DENSE_QR:
return OptionsAreValidForDenseQr(options, error);
case SPARSE_NORMAL_CHOLESKY:
return OptionsAreValidForSparseNormalCholesky(options, error);
case DENSE_SCHUR:
return OptionsAreValidForDenseSchur(options, error);
case SPARSE_SCHUR:
return OptionsAreValidForSparseSchur(options, error);
case ITERATIVE_SCHUR:
return OptionsAreValidForIterativeSchur(options, error);
case CGNR:
return OptionsAreValidForCgnr(options, error);
default:
LOG(FATAL) << "Congratulations you have found a bug. Please report "
"this to the "
"Ceres Solver developers. Unknown linear solver type: "
<< LinearSolverTypeToString(options.linear_solver_type);
}
return false;
}
bool TrustRegionOptionsAreValid(const Solver::Options& options,
std::string* error) {
OPTION_GT(initial_trust_region_radius, 0.0);
OPTION_GT(min_trust_region_radius, 0.0);
OPTION_GT(max_trust_region_radius, 0.0);
OPTION_LE_OPTION(min_trust_region_radius, max_trust_region_radius);
OPTION_LE_OPTION(min_trust_region_radius, initial_trust_region_radius);
OPTION_LE_OPTION(initial_trust_region_radius, max_trust_region_radius);
OPTION_GE(min_relative_decrease, 0.0);
OPTION_GE(min_lm_diagonal, 0.0);
OPTION_GE(max_lm_diagonal, 0.0);
OPTION_LE_OPTION(min_lm_diagonal, max_lm_diagonal);
OPTION_GE(max_num_consecutive_invalid_steps, 0);
OPTION_GT(eta, 0.0);
OPTION_GE(min_linear_solver_iterations, 0);
OPTION_GE(max_linear_solver_iterations, 0);
OPTION_LE_OPTION(min_linear_solver_iterations, max_linear_solver_iterations);
if (options.use_inner_iterations) {
OPTION_GE(inner_iteration_tolerance, 0.0);
}
if (options.use_nonmonotonic_steps) {
OPTION_GT(max_consecutive_nonmonotonic_steps, 0);
}
if ((options.trust_region_strategy_type == DOGLEG) &&
IsIterativeSolver(options.linear_solver_type)) {
*error =
"DOGLEG only supports exact factorization based linear "
"solvers. If you want to use an iterative solver please "
"use LEVENBERG_MARQUARDT as the trust_region_strategy_type";
return false;
}
if (!OptionsAreValidForLinearSolver(options, error)) {
return false;
}
if (!options.trust_region_minimizer_iterations_to_dump.empty() &&
options.trust_region_problem_dump_format_type != CONSOLE &&
options.trust_region_problem_dump_directory.empty()) {
*error = "Solver::Options::trust_region_problem_dump_directory is empty.";
return false;
}
return true;
}
bool LineSearchOptionsAreValid(const Solver::Options& options,
std::string* error) {
OPTION_GT(max_lbfgs_rank, 0);
OPTION_GT(min_line_search_step_size, 0.0);
OPTION_GT(max_line_search_step_contraction, 0.0);
OPTION_LT(max_line_search_step_contraction, 1.0);
OPTION_LT_OPTION(max_line_search_step_contraction,
min_line_search_step_contraction);
OPTION_LE(min_line_search_step_contraction, 1.0);
OPTION_GE(max_num_line_search_step_size_iterations,
(options.minimizer_type == ceres::TRUST_REGION ? 0 : 1));
OPTION_GT(line_search_sufficient_function_decrease, 0.0);
OPTION_LT_OPTION(line_search_sufficient_function_decrease,
line_search_sufficient_curvature_decrease);
OPTION_LT(line_search_sufficient_curvature_decrease, 1.0);
OPTION_GT(max_line_search_step_expansion, 1.0);
if ((options.line_search_direction_type == ceres::BFGS ||
options.line_search_direction_type == ceres::LBFGS) &&
options.line_search_type != ceres::WOLFE) {
*error =
std::string(
"Invalid configuration: Solver::Options::line_search_type = ") +
std::string(LineSearchTypeToString(options.line_search_type)) +
std::string(
". When using (L)BFGS, "
"Solver::Options::line_search_type must be set to WOLFE.");
return false;
}
// Warn user if they have requested BISECTION interpolation, but constraints
// on max/min step size change during line search prevent bisection scaling
// from occurring. Warn only, as this is likely a user mistake, but one
// which does not prevent us from continuing.
if (options.line_search_interpolation_type == ceres::BISECTION &&
(options.max_line_search_step_contraction > 0.5 ||
options.min_line_search_step_contraction < 0.5)) {
LOG(WARNING)
<< "Line search interpolation type is BISECTION, but specified "
<< "max_line_search_step_contraction: "
<< options.max_line_search_step_contraction << ", and "
<< "min_line_search_step_contraction: "
<< options.min_line_search_step_contraction
<< ", prevent bisection (0.5) scaling, continuing with solve "
"regardless.";
}
return true;
}
#undef OPTION_OP
#undef OPTION_OP_OPTION
#undef OPTION_GT
#undef OPTION_GE
#undef OPTION_LE
#undef OPTION_LT
#undef OPTION_LE_OPTION
#undef OPTION_LT_OPTION
void StringifyOrdering(const std::vector<int>& ordering, std::string* report) {
if (ordering.empty()) {
internal::StringAppendF(report, "AUTOMATIC");
return;
}
for (int i = 0; i < ordering.size() - 1; ++i) {
internal::StringAppendF(report, "%d,", ordering[i]);
}
internal::StringAppendF(report, "%d", ordering.back());
}
void SummarizeGivenProgram(const internal::Program& program,
Solver::Summary* summary) {
// clang-format off
summary->num_parameter_blocks = program.NumParameterBlocks();
summary->num_parameters = program.NumParameters();
summary->num_effective_parameters = program.NumEffectiveParameters();
summary->num_residual_blocks = program.NumResidualBlocks();
summary->num_residuals = program.NumResiduals();
// clang-format on
}
void SummarizeReducedProgram(const internal::Program& program,
Solver::Summary* summary) {
// clang-format off
summary->num_parameter_blocks_reduced = program.NumParameterBlocks();
summary->num_parameters_reduced = program.NumParameters();
summary->num_effective_parameters_reduced = program.NumEffectiveParameters();
summary->num_residual_blocks_reduced = program.NumResidualBlocks();
summary->num_residuals_reduced = program.NumResiduals();
// clang-format on
}
void PreSolveSummarize(const Solver::Options& options,
const internal::ProblemImpl* problem,
Solver::Summary* summary) {
SummarizeGivenProgram(problem->program(), summary);
internal::OrderingToGroupSizes(options.linear_solver_ordering.get(),
&(summary->linear_solver_ordering_given));
internal::OrderingToGroupSizes(options.inner_iteration_ordering.get(),
&(summary->inner_iteration_ordering_given));
// clang-format off
summary->dense_linear_algebra_library_type = options.dense_linear_algebra_library_type;
summary->dogleg_type = options.dogleg_type;
summary->inner_iteration_time_in_seconds = 0.0;
summary->num_line_search_steps = 0;
summary->line_search_cost_evaluation_time_in_seconds = 0.0;
summary->line_search_gradient_evaluation_time_in_seconds = 0.0;
summary->line_search_polynomial_minimization_time_in_seconds = 0.0;
summary->line_search_total_time_in_seconds = 0.0;
summary->inner_iterations_given = options.use_inner_iterations;
summary->line_search_direction_type = options.line_search_direction_type;
summary->line_search_interpolation_type = options.line_search_interpolation_type;
summary->line_search_type = options.line_search_type;
summary->linear_solver_type_given = options.linear_solver_type;
summary->max_lbfgs_rank = options.max_lbfgs_rank;
summary->minimizer_type = options.minimizer_type;
summary->nonlinear_conjugate_gradient_type = options.nonlinear_conjugate_gradient_type;
summary->num_threads_given = options.num_threads;
summary->preconditioner_type_given = options.preconditioner_type;
summary->sparse_linear_algebra_library_type = options.sparse_linear_algebra_library_type;
summary->linear_solver_ordering_type = options.linear_solver_ordering_type;
summary->trust_region_strategy_type = options.trust_region_strategy_type;
summary->visibility_clustering_type = options.visibility_clustering_type;
// clang-format on
}
void PostSolveSummarize(const internal::PreprocessedProblem& pp,
Solver::Summary* summary) {
internal::OrderingToGroupSizes(pp.options.linear_solver_ordering.get(),
&(summary->linear_solver_ordering_used));
// TODO(sameeragarwal): Update the preprocessor to collapse the
// second and higher groups into one group when nested dissection is
// used.
internal::OrderingToGroupSizes(pp.options.inner_iteration_ordering.get(),
&(summary->inner_iteration_ordering_used));
// clang-format off
summary->inner_iterations_used = pp.inner_iteration_minimizer != nullptr;
summary->linear_solver_type_used = pp.linear_solver_options.type;
summary->mixed_precision_solves_used = pp.options.use_mixed_precision_solves;
summary->num_threads_used = pp.options.num_threads;
summary->preconditioner_type_used = pp.options.preconditioner_type;
// clang-format on
internal::SetSummaryFinalCost(summary);
if (pp.reduced_program != nullptr) {
SummarizeReducedProgram(*pp.reduced_program, summary);
}
using internal::CallStatistics;
// It is possible that no evaluator was created. This would be the
// case if the preprocessor failed, or if the reduced problem did
// not contain any parameter blocks. Thus, only extract the
// evaluator statistics if one exists.
if (pp.evaluator != nullptr) {
const std::map<std::string, CallStatistics>& evaluator_statistics =
pp.evaluator->Statistics();
{
const CallStatistics& call_stats = FindWithDefault(
evaluator_statistics, "Evaluator::Residual", CallStatistics());
summary->residual_evaluation_time_in_seconds = call_stats.time;
summary->num_residual_evaluations = call_stats.calls;
}
{
const CallStatistics& call_stats = FindWithDefault(
evaluator_statistics, "Evaluator::Jacobian", CallStatistics());
summary->jacobian_evaluation_time_in_seconds = call_stats.time;
summary->num_jacobian_evaluations = call_stats.calls;
}
}
// Again, like the evaluator, there may or may not be a linear
// solver from which we can extract run time statistics. In
// particular the line search solver does not use a linear solver.
if (pp.linear_solver != nullptr) {
const std::map<std::string, CallStatistics>& linear_solver_statistics =
pp.linear_solver->Statistics();
const CallStatistics& call_stats = FindWithDefault(
linear_solver_statistics, "LinearSolver::Solve", CallStatistics());
summary->num_linear_solves = call_stats.calls;
summary->linear_solver_time_in_seconds = call_stats.time;
}
}
void Minimize(internal::PreprocessedProblem* pp, Solver::Summary* summary) {
using internal::Minimizer;
using internal::Program;
Program* program = pp->reduced_program.get();
if (pp->reduced_program->NumParameterBlocks() == 0) {
summary->message =
"Function tolerance reached. "
"No non-constant parameter blocks found.";
summary->termination_type = CONVERGENCE;
if (pp->options.logging_type != SILENT) {
VLOG(1) << summary->message;
}
summary->initial_cost = summary->fixed_cost;
summary->final_cost = summary->fixed_cost;
return;
}
const Vector original_reduced_parameters = pp->reduced_parameters;
auto minimizer = Minimizer::Create(pp->options.minimizer_type);
minimizer->Minimize(
pp->minimizer_options, pp->reduced_parameters.data(), summary);
program->StateVectorToParameterBlocks(
summary->IsSolutionUsable() ? pp->reduced_parameters.data()
: original_reduced_parameters.data());
program->CopyParameterBlockStateToUserState();
}
std::string SchurStructureToString(const int row_block_size,
const int e_block_size,
const int f_block_size) {
const std::string row = (row_block_size == Eigen::Dynamic)
? "d"
: internal::StringPrintf("%d", row_block_size);
const std::string e = (e_block_size == Eigen::Dynamic)
? "d"
: internal::StringPrintf("%d", e_block_size);
const std::string f = (f_block_size == Eigen::Dynamic)
? "d"
: internal::StringPrintf("%d", f_block_size);
return internal::StringPrintf("%s,%s,%s", row.c_str(), e.c_str(), f.c_str());
}
#ifndef CERES_NO_CUDA
bool IsCudaRequired(const Solver::Options& options) {
if (options.linear_solver_type == DENSE_NORMAL_CHOLESKY ||
options.linear_solver_type == DENSE_SCHUR ||
options.linear_solver_type == DENSE_QR) {
return (options.dense_linear_algebra_library_type == CUDA);
}
if (options.linear_solver_type == CGNR ||
options.linear_solver_type == SPARSE_SCHUR ||
options.linear_solver_type == SPARSE_NORMAL_CHOLESKY ||
(options.linear_solver_type == ITERATIVE_SCHUR &&
(options.preconditioner_type == CLUSTER_JACOBI ||
options.preconditioner_type == CLUSTER_TRIDIAGONAL))) {
return (options.sparse_linear_algebra_library_type == CUDA_SPARSE);
}
return false;
}
#endif
} // namespace
bool Solver::Options::IsValid(std::string* error) const {
if (!CommonOptionsAreValid(*this, error)) {
return false;
}
if (minimizer_type == TRUST_REGION &&
!TrustRegionOptionsAreValid(*this, error)) {
return false;
}
// We do not know if the problem is bounds constrained or not, if it
// is then the trust region solver will also use the line search
// solver to do a projection onto the box constraints, so make sure
// that the line search options are checked independent of what
// minimizer algorithm is being used.
return LineSearchOptionsAreValid(*this, error);
}
Solver::~Solver() = default;
void Solver::Solve(const Solver::Options& options,
Problem* problem,
Solver::Summary* summary) {
using internal::PreprocessedProblem;
using internal::Preprocessor;
using internal::ProblemImpl;
using internal::Program;
using internal::WallTimeInSeconds;
CHECK(problem != nullptr);
CHECK(summary != nullptr);
double start_time = WallTimeInSeconds();
*summary = Summary();
if (!options.IsValid(&summary->message)) {
LOG(ERROR) << "Terminating: " << summary->message;
return;
}
ProblemImpl* problem_impl = problem->mutable_impl();
Program* program = problem_impl->mutable_program();
PreSolveSummarize(options, problem_impl, summary);
#ifndef CERES_NO_CUDA
if (IsCudaRequired(options)) {
if (!problem_impl->context()->InitCuda(&summary->message)) {
LOG(ERROR) << "Terminating: " << summary->message;
return;
}
}
#endif // CERES_NO_CUDA
// If gradient_checking is enabled, wrap all cost functions in a
// gradient checker and install a callback that terminates if any gradient
// error is detected.
std::unique_ptr<internal::ProblemImpl> gradient_checking_problem;
internal::GradientCheckingIterationCallback gradient_checking_callback;
Solver::Options modified_options = options;
if (options.check_gradients) {
modified_options.callbacks.push_back(&gradient_checking_callback);
gradient_checking_problem = CreateGradientCheckingProblemImpl(
problem_impl,
options.gradient_check_numeric_derivative_relative_step_size,
options.gradient_check_relative_precision,
&gradient_checking_callback);
problem_impl = gradient_checking_problem.get();
program = problem_impl->mutable_program();
}
// Make sure that all the parameter blocks states are set to the
// values provided by the user.
program->SetParameterBlockStatePtrsToUserStatePtrs();
// The main thread also does work so we only need to launch num_threads - 1.
problem_impl->context()->EnsureMinimumThreads(options.num_threads - 1);
auto preprocessor = Preprocessor::Create(modified_options.minimizer_type);
PreprocessedProblem pp;
const bool status =
preprocessor->Preprocess(modified_options, problem_impl, &pp);
// We check the linear_solver_options.type rather than
// modified_options.linear_solver_type because, depending on the
// lack of a Schur structure, the preprocessor may change the linear
// solver type.
if (status && IsSchurType(pp.linear_solver_options.type)) {
// TODO(sameeragarwal): We can likely eliminate the duplicate call
// to DetectStructure here and inside the linear solver, by
// calling this in the preprocessor.
int row_block_size;
int e_block_size;
int f_block_size;
DetectStructure(*static_cast<internal::BlockSparseMatrix*>(
pp.minimizer_options.jacobian.get())
->block_structure(),
pp.linear_solver_options.elimination_groups[0],
&row_block_size,
&e_block_size,
&f_block_size);
summary->schur_structure_given =
SchurStructureToString(row_block_size, e_block_size, f_block_size);
internal::GetBestSchurTemplateSpecialization(
&row_block_size, &e_block_size, &f_block_size);
summary->schur_structure_used =
SchurStructureToString(row_block_size, e_block_size, f_block_size);
}
summary->fixed_cost = pp.fixed_cost;
summary->preprocessor_time_in_seconds = WallTimeInSeconds() - start_time;
if (status) {
const double minimizer_start_time = WallTimeInSeconds();
Minimize(&pp, summary);
summary->minimizer_time_in_seconds =
WallTimeInSeconds() - minimizer_start_time;
} else {
summary->message = pp.error;
}
const double postprocessor_start_time = WallTimeInSeconds();
problem_impl = problem->mutable_impl();
program = problem_impl->mutable_program();
// On exit, ensure that the parameter blocks again point at the user
// provided values and the parameter blocks are numbered according
// to their position in the original user provided program.
program->SetParameterBlockStatePtrsToUserStatePtrs();
program->SetParameterOffsetsAndIndex();
PostSolveSummarize(pp, summary);
summary->postprocessor_time_in_seconds =
WallTimeInSeconds() - postprocessor_start_time;
// If the gradient checker reported an error, we want to report FAILURE
// instead of USER_FAILURE and provide the error log.
if (gradient_checking_callback.gradient_error_detected()) {
summary->termination_type = FAILURE;
summary->message = gradient_checking_callback.error_log();
}
summary->total_time_in_seconds = WallTimeInSeconds() - start_time;
}
void Solve(const Solver::Options& options,
Problem* problem,
Solver::Summary* summary) {
Solver solver;
solver.Solve(options, problem, summary);
}
std::string Solver::Summary::BriefReport() const {
return StringPrintf(
"Ceres Solver Report: "
"Iterations: %d, "
"Initial cost: %e, "
"Final cost: %e, "
"Termination: %s",
num_successful_steps + num_unsuccessful_steps,
initial_cost,
final_cost,
TerminationTypeToString(termination_type));
}
std::string Solver::Summary::FullReport() const {
using internal::VersionString;
// NOTE operator+ is not usable for concatenating a string and a string_view.
std::string report =
std::string{"\nSolver Summary (v "}.append(VersionString()) + ")\n\n";
StringAppendF(&report, "%45s %21s\n", "Original", "Reduced");
StringAppendF(&report,
"Parameter blocks % 25d% 25d\n",
num_parameter_blocks,
num_parameter_blocks_reduced);
StringAppendF(&report,
"Parameters % 25d% 25d\n",
num_parameters,
num_parameters_reduced);
if (num_effective_parameters_reduced != num_parameters_reduced) {
StringAppendF(&report,
"Effective parameters% 25d% 25d\n",
num_effective_parameters,
num_effective_parameters_reduced);
}
StringAppendF(&report,
"Residual blocks % 25d% 25d\n",
num_residual_blocks,
num_residual_blocks_reduced);
StringAppendF(&report,
"Residuals % 25d% 25d\n",
num_residuals,
num_residuals_reduced);
if (minimizer_type == TRUST_REGION) {
// TRUST_SEARCH HEADER
StringAppendF(
&report, "\nMinimizer %19s\n", "TRUST_REGION");
if (linear_solver_type_used == DENSE_NORMAL_CHOLESKY ||
linear_solver_type_used == DENSE_SCHUR ||
linear_solver_type_used == DENSE_QR) {
const char* mixed_precision_suffix =
(mixed_precision_solves_used ? "(Mixed Precision)" : "");
StringAppendF(&report,
"\nDense linear algebra library %15s %s\n",
DenseLinearAlgebraLibraryTypeToString(
dense_linear_algebra_library_type),
mixed_precision_suffix);
}
StringAppendF(&report,
"Trust region strategy %19s",
TrustRegionStrategyTypeToString(trust_region_strategy_type));
if (trust_region_strategy_type == DOGLEG) {
if (dogleg_type == TRADITIONAL_DOGLEG) {
StringAppendF(&report, " (TRADITIONAL)");
} else {
StringAppendF(&report, " (SUBSPACE)");
}
}
const bool used_sparse_linear_algebra_library =
linear_solver_type_used == SPARSE_NORMAL_CHOLESKY ||
linear_solver_type_used == SPARSE_SCHUR ||
linear_solver_type_used == CGNR ||
(linear_solver_type_used == ITERATIVE_SCHUR &&
(preconditioner_type_used == CLUSTER_JACOBI ||
preconditioner_type_used == CLUSTER_TRIDIAGONAL));
const bool linear_solver_ordering_required =
linear_solver_type_used == SPARSE_SCHUR ||
(linear_solver_type_used == ITERATIVE_SCHUR &&
(preconditioner_type_used == CLUSTER_JACOBI ||
preconditioner_type_used == CLUSTER_TRIDIAGONAL)) ||
(linear_solver_type_used == CGNR && preconditioner_type_used == SUBSET);
if (used_sparse_linear_algebra_library) {
const char* mixed_precision_suffix =
(mixed_precision_solves_used ? "(Mixed Precision)" : "");
if (linear_solver_ordering_required) {
StringAppendF(
&report,
"\nSparse linear algebra library %15s + %s %s\n",
SparseLinearAlgebraLibraryTypeToString(
sparse_linear_algebra_library_type),
LinearSolverOrderingTypeToString(linear_solver_ordering_type),
mixed_precision_suffix);
} else {
StringAppendF(&report,
"\nSparse linear algebra library %15s %s\n",
SparseLinearAlgebraLibraryTypeToString(
sparse_linear_algebra_library_type),
mixed_precision_suffix);
}
}
StringAppendF(&report, "\n");
StringAppendF(&report, "%45s %21s\n", "Given", "Used");
StringAppendF(&report,
"Linear solver %25s%25s\n",
LinearSolverTypeToString(linear_solver_type_given),
LinearSolverTypeToString(linear_solver_type_used));
if (IsIterativeSolver(linear_solver_type_given)) {
StringAppendF(&report,
"Preconditioner %25s%25s\n",
PreconditionerTypeToString(preconditioner_type_given),
PreconditionerTypeToString(preconditioner_type_used));
}
if (preconditioner_type_used == CLUSTER_JACOBI ||
preconditioner_type_used == CLUSTER_TRIDIAGONAL) {
StringAppendF(
&report,
"Visibility clustering%24s%25s\n",
VisibilityClusteringTypeToString(visibility_clustering_type),
VisibilityClusteringTypeToString(visibility_clustering_type));
}
StringAppendF(&report,
"Threads % 25d% 25d\n",
num_threads_given,
num_threads_used);
std::string given;
StringifyOrdering(linear_solver_ordering_given, &given);
std::string used;
StringifyOrdering(linear_solver_ordering_used, &used);
StringAppendF(&report,
"Linear solver ordering %22s %24s\n",
given.c_str(),
used.c_str());
if (IsSchurType(linear_solver_type_used)) {
StringAppendF(&report,
"Schur structure %22s %24s\n",
schur_structure_given.c_str(),
schur_structure_used.c_str());
}
if (inner_iterations_given) {
StringAppendF(&report,
"Use inner iterations %20s %20s\n",
inner_iterations_given ? "True" : "False",
inner_iterations_used ? "True" : "False");
}
if (inner_iterations_used) {
std::string given;
StringifyOrdering(inner_iteration_ordering_given, &given);
std::string used;
StringifyOrdering(inner_iteration_ordering_used, &used);
StringAppendF(&report,
"Inner iteration ordering %20s %24s\n",
given.c_str(),
used.c_str());
}
} else {
// LINE_SEARCH HEADER
StringAppendF(&report, "\nMinimizer %19s\n", "LINE_SEARCH");
std::string line_search_direction_string;
if (line_search_direction_type == LBFGS) {
line_search_direction_string = StringPrintf("LBFGS (%d)", max_lbfgs_rank);
} else if (line_search_direction_type == NONLINEAR_CONJUGATE_GRADIENT) {
line_search_direction_string = NonlinearConjugateGradientTypeToString(
nonlinear_conjugate_gradient_type);
} else {
line_search_direction_string =
LineSearchDirectionTypeToString(line_search_direction_type);
}
StringAppendF(&report,
"Line search direction %19s\n",
line_search_direction_string.c_str());
const std::string line_search_type_string = StringPrintf(
"%s %s",
LineSearchInterpolationTypeToString(line_search_interpolation_type),
LineSearchTypeToString(line_search_type));
StringAppendF(&report,
"Line search type %19s\n",
line_search_type_string.c_str());
StringAppendF(&report, "\n");
StringAppendF(&report, "%45s %21s\n", "Given", "Used");
StringAppendF(&report,
"Threads % 25d% 25d\n",
num_threads_given,
num_threads_used);
}
StringAppendF(&report, "\nCost:\n");
StringAppendF(&report, "Initial % 30e\n", initial_cost);
if (termination_type != FAILURE && termination_type != USER_FAILURE) {
StringAppendF(&report, "Final % 30e\n", final_cost);
StringAppendF(&report, "Change % 30e\n", initial_cost - final_cost);
}
StringAppendF(&report,
"\nMinimizer iterations % 16d\n",
num_successful_steps + num_unsuccessful_steps);
// Successful/Unsuccessful steps only matter in the case of the
// trust region solver. Line search terminates when it encounters
// the first unsuccessful step.
if (minimizer_type == TRUST_REGION) {
StringAppendF(&report,
"Successful steps % 14d\n",
num_successful_steps);
StringAppendF(&report,
"Unsuccessful steps % 14d\n",
num_unsuccessful_steps);
}
if (inner_iterations_used) {
StringAppendF(&report,
"Steps with inner iterations % 14d\n",
num_inner_iteration_steps);
}
const bool line_search_used =
(minimizer_type == LINE_SEARCH ||
(minimizer_type == TRUST_REGION && is_constrained));
if (line_search_used) {
StringAppendF(&report,
"Line search steps % 14d\n",
num_line_search_steps);
}
StringAppendF(&report, "\nTime (in seconds):\n");
StringAppendF(
&report, "Preprocessor %25.6f\n", preprocessor_time_in_seconds);
StringAppendF(&report,
"\n Residual only evaluation %18.6f (%d)\n",
residual_evaluation_time_in_seconds,
num_residual_evaluations);
if (line_search_used) {
StringAppendF(&report,
" Line search cost evaluation %10.6f\n",
line_search_cost_evaluation_time_in_seconds);
}
StringAppendF(&report,
" Jacobian & residual evaluation %12.6f (%d)\n",
jacobian_evaluation_time_in_seconds,
num_jacobian_evaluations);
if (line_search_used) {
StringAppendF(&report,
" Line search gradient evaluation %6.6f\n",
line_search_gradient_evaluation_time_in_seconds);
}
if (minimizer_type == TRUST_REGION) {
StringAppendF(&report,
" Linear solver %23.6f (%d)\n",
linear_solver_time_in_seconds,
num_linear_solves);
}
if (inner_iterations_used) {
StringAppendF(&report,
" Inner iterations %23.6f\n",
inner_iteration_time_in_seconds);
}
if (line_search_used) {
StringAppendF(&report,
" Line search polynomial minimization %.6f\n",
line_search_polynomial_minimization_time_in_seconds);
}
StringAppendF(
&report, "Minimizer %25.6f\n\n", minimizer_time_in_seconds);
StringAppendF(
&report, "Postprocessor %24.6f\n", postprocessor_time_in_seconds);
StringAppendF(
&report, "Total %25.6f\n\n", total_time_in_seconds);
StringAppendF(&report,
"Termination: %25s (%s)\n",
TerminationTypeToString(termination_type),
message.c_str());
return report;
}
bool Solver::Summary::IsSolutionUsable() const {
return internal::IsSolutionUsable(*this);
}
} // namespace ceres