|  | .. highlight:: c++ | 
|  |  | 
|  | .. default-domain:: cpp | 
|  |  | 
|  | .. cpp:namespace:: ceres | 
|  |  | 
|  | .. _chapter-gradient_tutorial: | 
|  |  | 
|  | ================================== | 
|  | General Unconstrained Minimization | 
|  | ================================== | 
|  |  | 
|  | Ceres Solver besides being able to solve non-linear least squares | 
|  | problem can also solve general unconstrained problems using just their | 
|  | objective function value and gradients. In this chapter we will see | 
|  | how to do this. | 
|  |  | 
|  | Rosenbrock's Function | 
|  | ===================== | 
|  |  | 
|  | Consider minimizing the famous `Rosenbrock's function | 
|  | <http://en.wikipedia.org/wiki/Rosenbrock_function>`_ [#f1]_. | 
|  |  | 
|  | The simplest way to minimize is to define a templated functor to | 
|  | evaluate the objective value of this function and then use Ceres | 
|  | Solver's automatic differentiation to compute its derivatives. | 
|  |  | 
|  | We begin by defining a templated functor and then using | 
|  | ``AutoDiffFirstOrderFunction`` to construct an instance of the | 
|  | ``FirstOrderFunction`` interface. This is the object that is | 
|  | responsible for computing the objective function value and the | 
|  | gradient (if required). This is the analog of the | 
|  | :class:`CostFunction` when defining non-linear least squares problems | 
|  | in Ceres. | 
|  |  | 
|  | .. code:: | 
|  |  | 
|  | // f(x,y) = (1-x)^2 + 100(y - x^2)^2; | 
|  | struct Rosenbrock { | 
|  | template <typename T> | 
|  | bool operator()(const T* parameters, T* cost) const { | 
|  | const T x = parameters[0]; | 
|  | const T y = parameters[1]; | 
|  | cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ceres::FirstOrderFunction* Create() { | 
|  | constexpr int kNumParameters = 2; | 
|  | return new ceres::AutoDiffFirstOrderFunction<Rosenbrock, kNumParameters>( | 
|  | new Rosenbrock); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | Minimizing it then is a straightforward matter of constructing a | 
|  | :class:`GradientProblem` object and calling :func:`Solve` on it. | 
|  |  | 
|  | .. code:: | 
|  |  | 
|  | double parameters[2] = {-1.2, 1.0}; | 
|  |  | 
|  | ceres::GradientProblem problem(Rosenbrock::Create()); | 
|  |  | 
|  | ceres::GradientProblemSolver::Options options; | 
|  | options.minimizer_progress_to_stdout = true; | 
|  | ceres::GradientProblemSolver::Summary summary; | 
|  | ceres::Solve(options, problem, parameters, &summary); | 
|  |  | 
|  | std::cout << summary.FullReport() << "\n"; | 
|  |  | 
|  | Executing this code results, solve the problem using limited memory | 
|  | `BFGS | 
|  | <http://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm>`_ | 
|  | algorithm. | 
|  |  | 
|  | .. code-block:: bash | 
|  |  | 
|  | 0: f: 2.420000e+01 d: 0.00e+00 g: 2.16e+02 h: 0.00e+00 s: 0.00e+00 e:  0 it: 1.19e-05 tt: 1.19e-05 | 
|  | 1: f: 4.280493e+00 d: 1.99e+01 g: 1.52e+01 h: 2.01e-01 s: 8.62e-04 e:  2 it: 7.30e-05 tt: 1.72e-04 | 
|  | 2: f: 3.571154e+00 d: 7.09e-01 g: 1.35e+01 h: 3.78e-01 s: 1.34e-01 e:  3 it: 1.60e-05 tt: 1.93e-04 | 
|  | 3: f: 3.440869e+00 d: 1.30e-01 g: 1.73e+01 h: 1.36e-01 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 1.97e-04 | 
|  | 4: f: 3.213597e+00 d: 2.27e-01 g: 1.55e+01 h: 1.06e-01 s: 4.59e-01 e:  1 it: 1.19e-06 tt: 2.00e-04 | 
|  | 5: f: 2.839723e+00 d: 3.74e-01 g: 1.05e+01 h: 1.34e-01 s: 5.24e-01 e:  1 it: 9.54e-07 tt: 2.03e-04 | 
|  | 6: f: 2.448490e+00 d: 3.91e-01 g: 1.29e+01 h: 3.04e-01 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 2.05e-04 | 
|  | 7: f: 1.943019e+00 d: 5.05e-01 g: 4.00e+00 h: 8.81e-02 s: 7.43e-01 e:  1 it: 9.54e-07 tt: 2.08e-04 | 
|  | 8: f: 1.731469e+00 d: 2.12e-01 g: 7.36e+00 h: 1.71e-01 s: 4.60e-01 e:  2 it: 2.15e-06 tt: 2.11e-04 | 
|  | 9: f: 1.503267e+00 d: 2.28e-01 g: 6.47e+00 h: 8.66e-02 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 2.14e-04 | 
|  | 10: f: 1.228331e+00 d: 2.75e-01 g: 2.00e+00 h: 7.70e-02 s: 7.90e-01 e:  1 it: 0.00e+00 tt: 2.16e-04 | 
|  | 11: f: 1.016523e+00 d: 2.12e-01 g: 5.15e+00 h: 1.39e-01 s: 3.76e-01 e:  2 it: 1.91e-06 tt: 2.25e-04 | 
|  | 12: f: 9.145773e-01 d: 1.02e-01 g: 6.74e+00 h: 7.98e-02 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 2.28e-04 | 
|  | 13: f: 7.508302e-01 d: 1.64e-01 g: 3.88e+00 h: 5.76e-02 s: 4.93e-01 e:  1 it: 9.54e-07 tt: 2.30e-04 | 
|  | 14: f: 5.832378e-01 d: 1.68e-01 g: 5.56e+00 h: 1.42e-01 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 2.33e-04 | 
|  | 15: f: 3.969581e-01 d: 1.86e-01 g: 1.64e+00 h: 1.17e-01 s: 1.00e+00 e:  1 it: 1.19e-06 tt: 2.36e-04 | 
|  | 16: f: 3.171557e-01 d: 7.98e-02 g: 3.84e+00 h: 1.18e-01 s: 3.97e-01 e:  2 it: 1.91e-06 tt: 2.39e-04 | 
|  | 17: f: 2.641257e-01 d: 5.30e-02 g: 3.27e+00 h: 6.14e-02 s: 1.00e+00 e:  1 it: 1.19e-06 tt: 2.42e-04 | 
|  | 18: f: 1.909730e-01 d: 7.32e-02 g: 5.29e-01 h: 8.55e-02 s: 6.82e-01 e:  1 it: 9.54e-07 tt: 2.45e-04 | 
|  | 19: f: 1.472012e-01 d: 4.38e-02 g: 3.11e+00 h: 1.20e-01 s: 3.47e-01 e:  2 it: 1.91e-06 tt: 2.49e-04 | 
|  | 20: f: 1.093558e-01 d: 3.78e-02 g: 2.97e+00 h: 8.43e-02 s: 1.00e+00 e:  1 it: 2.15e-06 tt: 2.52e-04 | 
|  | 21: f: 6.710346e-02 d: 4.23e-02 g: 1.42e+00 h: 9.64e-02 s: 8.85e-01 e:  1 it: 8.82e-06 tt: 2.81e-04 | 
|  | 22: f: 3.993377e-02 d: 2.72e-02 g: 2.30e+00 h: 1.29e-01 s: 4.63e-01 e:  2 it: 7.87e-06 tt: 2.96e-04 | 
|  | 23: f: 2.911794e-02 d: 1.08e-02 g: 2.55e+00 h: 6.55e-02 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.00e-04 | 
|  | 24: f: 1.457683e-02 d: 1.45e-02 g: 2.77e-01 h: 6.37e-02 s: 6.14e-01 e:  1 it: 1.19e-06 tt: 3.03e-04 | 
|  | 25: f: 8.577515e-03 d: 6.00e-03 g: 2.86e+00 h: 1.40e-01 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.06e-04 | 
|  | 26: f: 3.486574e-03 d: 5.09e-03 g: 1.76e-01 h: 1.23e-02 s: 1.00e+00 e:  1 it: 1.19e-06 tt: 3.09e-04 | 
|  | 27: f: 1.257570e-03 d: 2.23e-03 g: 1.39e-01 h: 5.08e-02 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.12e-04 | 
|  | 28: f: 2.783568e-04 d: 9.79e-04 g: 6.20e-01 h: 6.47e-02 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.15e-04 | 
|  | 29: f: 2.533399e-05 d: 2.53e-04 g: 1.68e-02 h: 1.98e-03 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.17e-04 | 
|  | 30: f: 7.591572e-07 d: 2.46e-05 g: 5.40e-03 h: 9.27e-03 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.20e-04 | 
|  | 31: f: 1.902460e-09 d: 7.57e-07 g: 1.62e-03 h: 1.89e-03 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.23e-04 | 
|  | 32: f: 1.003030e-12 d: 1.90e-09 g: 3.50e-05 h: 3.52e-05 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.26e-04 | 
|  | 33: f: 4.835994e-17 d: 1.00e-12 g: 1.05e-07 h: 1.13e-06 s: 1.00e+00 e:  1 it: 1.19e-06 tt: 3.34e-04 | 
|  | 34: f: 1.885250e-22 d: 4.84e-17 g: 2.69e-10 h: 1.45e-08 s: 1.00e+00 e:  1 it: 9.54e-07 tt: 3.37e-04 | 
|  |  | 
|  | Solver Summary (v 2.2.0-eigen-(3.4.0)-lapack-suitesparse-(7.1.0)-metis-(5.1.0)-acceleratesparse-eigensparse) | 
|  |  | 
|  | Parameters                                  2 | 
|  | Line search direction              LBFGS (20) | 
|  | Line search type                  CUBIC WOLFE | 
|  |  | 
|  |  | 
|  | Cost: | 
|  | Initial                          2.420000e+01 | 
|  | Final                            1.955192e-27 | 
|  | Change                           2.420000e+01 | 
|  |  | 
|  | Minimizer iterations                       36 | 
|  |  | 
|  | Time (in seconds): | 
|  |  | 
|  | Cost evaluation                    0.000000 (0) | 
|  | Gradient & cost evaluation         0.000000 (44) | 
|  | Polynomial minimization            0.000061 | 
|  | Total                                0.000438 | 
|  |  | 
|  | Termination:                      CONVERGENCE (Parameter tolerance reached. Relative step_norm: 1.890726e-11 <= 1.000000e-08.) | 
|  |  | 
|  | Initial x: -1.2 y: 1 | 
|  | Final   x: 1 y: 1 | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | If you are unable to use automatic differentiation for some reason | 
|  | (say because you need to call an external library), then you can | 
|  | use numeric differentiation. In that case the functor is defined as | 
|  | follows [#f2]_. | 
|  |  | 
|  | .. code:: | 
|  |  | 
|  | // f(x,y) = (1-x)^2 + 100(y - x^2)^2; | 
|  | struct Rosenbrock { | 
|  | bool operator()(const double* parameters, double* cost) const { | 
|  | const double x = parameters[0]; | 
|  | const double y = parameters[1]; | 
|  | cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ceres::FirstOrderFunction* Create() { | 
|  | constexpr int kNumParameters = 2; | 
|  | return new ceres::NumericDiffFirstOrderFunction<Rosenbrock, | 
|  | ceres::CENTRAL, | 
|  | kNumParameters>( | 
|  | new Rosenbrock); | 
|  | } | 
|  | }; | 
|  |  | 
|  | And finally, if you would rather compute the derivatives by hand (say | 
|  | because the size of the parameter vector is too large to be | 
|  | automatically differentiated). Then you should define an instance of | 
|  | `FirstOrderFunction`, which is the analog of :class:`CostFunction` for | 
|  | non-linear least squares problems [#f3]_. | 
|  |  | 
|  | .. code:: | 
|  |  | 
|  | // f(x,y) = (1-x)^2 + 100(y - x^2)^2; | 
|  | class Rosenbrock final  : public ceres::FirstOrderFunction { | 
|  | public: | 
|  | ~Rosenbrock() override {} | 
|  |  | 
|  | bool Evaluate(const double* parameters, | 
|  | double* cost, | 
|  | double* gradient) const override { | 
|  | const double x = parameters[0]; | 
|  | const double y = parameters[1]; | 
|  |  | 
|  | cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); | 
|  | if (gradient) { | 
|  | gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x; | 
|  | gradient[1] = 200.0 * (y - x * x); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int NumParameters() const override { return 2; } | 
|  | }; | 
|  |  | 
|  | .. rubric:: Footnotes | 
|  |  | 
|  | .. [#f1] `examples/rosenbrock.cc | 
|  | <https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock.cc>`_ | 
|  |  | 
|  | .. [#f2] `examples/rosenbrock_numeric_diff.cc | 
|  | <https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock_numeric_diff.cc>`_ | 
|  |  | 
|  | .. [#f3] `examples/rosenbrock_analytic_diff.cc | 
|  | <https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock_analytic_diff.cc>`_ |